2016 - WAEC Mathematics Past Questions and Answers - page 2
2x + y = 7...(1)
3x - 2y = 3...(2)
From (1), y = 7 - 2x for y in (2)
3x - 2(7 - 2x) = 3
3x - 14 + 4x = 3
7x + 3 + 14 = 17
x = (\frac{17}{7})
Hence, 7 x (\frac{17}{7})
= 17 - 10
= 7
(\frac{2}{1 - x} - \frac{1}{x}) = (\frac{2x - 1(1 - x)}{x(1 - x)})
= (\frac{2x - 1(1 + x)}{x(1 - x)})
= (\frac{3x - 1}{x(1 - x)})
P = S + (\frac{sm^2}{nr})
P = S(1 + (\frac{m^2}{nr}))
P = S(1 + (\frac{nr + m^2}{nr}))
nrp = S(nr + m2)
S = (\frac{nrp}{nr + m^2})
(2x + 3y)2 - (x - 4y)2
= (2x + 3y)(2x + 3y) - (x - 4y)(x - 4y)
= 4x2 + 12xy + 9y2 - (x2 - 8xy+ 16y2)
= 4x2 + 12xy + 19y2 - x2 + 8xy - 16y2
= 3x2 + 20xy - 7y2
= 3x2 + 21xy - xy - 7y2
= 3x(x + 7y) - y(x + 7y)
= (3x - y)(x + 7y)
Curved surface area of cylinder = 2(\pi)rh
110 = 2 x (\frac{22}{7}) x r x 5
r = (\frac{110 \times 7}{44 \times 5})
= 3.5cm
Volume of pyramid = (\frac{1}{3})lbh
90 = (\frac{1}{3} \times x \times 6 \times 15)
x = (\frac{90 \times 33}{6 \times 15})
= 3
A straight line passes through the points P(1,2) and Q(5,8). Calculate the gradient of the line PQ
Let: (x1, y1) = (1, 2)
(x2, y2) = (5, 8)
The gradient m of \(\bar{PQ}\) is given by
m = \(\frac{y_2 y_1}{x_2 - x_1}\)
= \(\frac{8 - 2}{5 - 1}\)
= \(\frac{6}{4}\)
= \(\frac{3}{2}\)
(5,8). Calculate the length PQ
|PQ| = (\sqrt{(x_2 - X- 1) + (y_2 - y_1)^2})
= (\sqrt{(5 - 1)^2 + (8 - 2)^2})
= (\sqrt{4^2 + 6^2})
= (\sqrt{16 + 36})
= (\sqrt{52})
= 2(\sqrt{13})
sin 60o = x + 0.5 0o(given)
0.8660 = x + 0.5
0.8660 - 0.5 = x
x = 0.3660
cos(\theta) = x(given)
cos(\theta) = 0.3660
Hence, (\theta) = cos-1(0.3660)
= 68.53o
= 69o (nearest degree)
Age(years) & 13 & 14 & 15 & 16 & 17 \
\hline
Frequency & 10 & 24 & 8 & 5 & 3
\end{array}\)
The table shows the ages of students in a club. How many students are in the club?
Number of students in the club is
10 + 24 + 8 + 5 + 3 = 50