2017 - WAEC Mathematics Past Questions and Answers - page 3

21

Given that cos 30\(^o\) = sin 60\(^o\) = \(\frac{3}{2}\) and sin 30\(^o\) = cos 60\(^o\) = \(\frac{1}{2}\), evaluate \(\frac{tan 60^o - q}{1 - tan 30^o}\)

A
\(\sqrt{3 - 2}\)
B
2 - \(\sqrt{3}\)
C
\(\sqrt{3}\)
D
-2
correct option: c

Tan 60 = 3; Tan 30 = 1

\(\frac{\tan 60^o - 1}{1 - tan 30^o}\)  = \(\frac{\sqrt{3 - 1}}{1 - \frac{1}{\sqrt{3}}}\) = \(\frac{\sqrt{3 - 1}}{\frac{3 - 1}{\sqrt{3}}}\)

= \(\frac{\sqrt{3 - 1}}{1} \times \frac{\sqrt{3 - 1}}{\sqrt{3}}\)

= \(\frac{\sqrt{3 - 1}}{1} \times \frac{\sqrt{3}}{\sqrt{3}}\)

= \(\sqrt{3}\)

 

Users' Answers & Comments
22

In what number base was the addition 1 + nn = 100, where n > 0, done?

A
n - 1
B
A. n + 2
C
B. n + 1
D
C. n
correct option: c
Users' Answers & Comments
23

Simplify; \(\sqrt{2}(\sqrt{6} + 2\sqrt{2}) - 2\sqrt{3}\)

A
4
B
\(\sqrt{3} + 4\)
C
4 \(\sqrt{2}\)
D
4\(\sqrt{3} + 4\)
correct option: a

\(\sqrt{2}(\sqrt{6} + 2\sqrt{2}) - 2\sqrt{3}\)

\(\sqrt{12}\) + 2 x 2 - 2\(\sqrt{3}\)

2 \(\sqrt{3}\) - 2 \(\sqrt{3}\) + 4

= 4

Users' Answers & Comments
24

Three exterior angles of a polygon are 30\(^o\), 40\(^o\) and 60\(^o\). If the remaining exterior angles are 46\(^o\) each, name the polygon.

A
decagon
B
nonagon
C
octagon
D
hexagon
correct option: c

Sum of all exterior angles is 360\(^o\)

360\(^o\) (30\(^o\) - 40\(^o\))

360 - (130\(^o\))

230\(^o\)

remaining is 46\(^o\) = \(\frac{230}{46}\) = 5

5 + 3 = 8 sides; Octagon

Users' Answers & Comments
25

Find the 6th term of the sequence \(\frac{2}{3} \frac{7}{15} \frac{4}{15}\),...

A
-\(\frac{1}{3}\)
B
-\(\frac{1}{5}\)
C
-\(\frac{1}{15}\)
D
\(\frac{1}{9}\)
correct option: a

a = \(\frac{2}{3}\), d = \(\frac{7}{15}\) - \(\frac{2}{3}\)

= 7 - 10

= \(\frac{-3}{15}\)

d = - \(\frac{-1}{5}\)

T6 = a + 5d

= \(\frac{2}{3}\) + 5(\(\frac{-1}{5}\)

= \(\frac{2}{3}\) - 1

= \(\frac{2 - 3}{3}\)

= \(\frac{-1}{3}\)

 

 

Users' Answers & Comments
26

The roots of a quadratic equation are \(\frac{-1}{2}\) and \(\frac{2}{3}\). Find the equation.

A
\(6x^2 - x + 2 = 0\)
B
\(6x^2 - x - 2 = 0\)
C
\(6x^2 + x - 2 = 0\)
D
\(6x^2 + x + 2 = 0\)
correct option: b

(x + \(\frac{1}{2}\)) (n - \(\frac{2}{3}\))

\(x^2 - \frac{2}{3^x} + \frac{x}{2} - \frac{1}{3}\)

\(6x^2 - 4n + 3n - 2 = 0\)

\(6x^2 - x - 2 = 0\)

 

Users' Answers & Comments
27

Make x the subject of the relation d = \(\sqrt{\frac{6}{x} - \frac{y}{2}}\)

A
x = \(\frac{6 + 12}{d^2 + y}\)
B
x = \(\frac{12}{d^2 - y}\)
C
x = \(\frac{12}{y} - 2d^2\)
D
x = \(\frac{12}{2d^2 - y}\)
correct option: a

d = \(\sqrt{\frac{6}{x} - \frac{y}{2}}\)

\(d^2 = \frac{6}{x} - \frac{y}{2}\)

\(2xd^2 = 12 - xy\)

\(2xd^2 + xy = 12\)

x = \(\frac{6 + 12}{d^2 + y}\)

Users' Answers & Comments
28

Consider the statements: p it is hot, q: it is raining

Which of the following symbols correctly represents the statement "It is raining if and only if it it is cold"?

       

 

A
p \(\iff\) \(\sim\)q
B
p \(\iff\) q
C
\(\sim\)p \(\iff\) \(\sim\)q
D
q \(\iff\) \(\sim\)p
correct option: d
Users' Answers & Comments
29

Given that t = \(2 ^{-x}\), find \(2 ^{x + 1}\) in terms of t. 

A
\(\frac{2}{t}\)
B
\(\frac{t}{2}\)
C
\(\frac{1}{2t}\)
D
t
correct option: a

t = \(2^{-x} = \frac{1}{2^{x}}\)

\(\implies 2^{x} =\frac{1}{t}\)

\(2^{x+1} = 2^{x} \times 2^{1}\)

= \(\frac{1}{t} \times 2 = \frac{2}{t}\)

Users' Answers & Comments
30

Two bottles are drawn with replacement from a crate containing 8 coke, 12 and 4 sprite bottles. What is the probability that the first is coke and the second is not coke?

A
\(\frac{1}{12}\)
B
\(\frac{1}{6}\)
C
\(\frac{2}{9}\)
D
\(\frac{3}{8}\)
correct option: c

Total = 8 + 12 + 4

= 24

\(\frac{8}{24} \times (\frac{12}{24} + \frac{4}{24}\))

= \(\frac{1}{3} \times (\frac{1}{2} + \frac{1}{6}\))

= \(\frac{1}{3} \times \frac{3 + 1}{6}\)

\(\frac{1}{3} \times \frac{4}{6} = \frac{2}{9}\)

Users' Answers & Comments
Please share this, thanks: