1993 - JAMB Mathematics Past Questions and Answers - page 2
(\frac{1 + ax}{1 - ax}) = (\frac{p}{q}) by cross multiplication,
q(1 + ax) = p(1 - ax)
q + qax = p - pax
qax + pax = p - q
∴ x = (\frac{p - q}{a(p + q)})
Users' Answers & CommentsFactorize 15 + 7x - 2x2
(5 - x)(3 + 2x); suppose 15 + 7x = 2x2 = 0
∴ (5 - x)(3 + 2x) = 0
x = 5 or x = -(\frac{3}{2})
Since 5 is a root, then (x - 5) is a factor
Users' Answers & Comments(x + (\frac{1}{x}) + 1)2 - (x + (\frac{1}{x}) + 1)2
= (x + (\frac{1}{x}) + 1 + x + (\frac{-1}{x}) - 1)(x - (\frac{1}{x}) + 1 - x + (\frac{1}{x}) + 1)
= (2x) (2 + (\frac{2}{x})) = 2x x 2(1 + (\frac{1}{x}))
4x (1 + (\frac{1}{x})) = 4x + 4
= 4(1 + x)
Users' Answers & Commentsx2 + y - 5 = 0.....(i)
y - 7x + 3 = 0.........(ii)
y = 7x - 3, substituting the value of y in equation (i)
x2 + (7x - 3) - 5 = 0
x2 + 7x + 3 = 0
(x + 8)(x - 1) = 0
x = -8 or 1
Users' Answers & Comments(3x - 2)(5x - 4) = (3x - 2)2 = 5x2 - 22x + 6
= 9x2 = 12x + 4
6x2 - 10x + 4 = 0
6x2 - 6x - 4x + 4 = 0
6x(x - 1) -4(x - 1) = (6x - 4)(x -1) = 0
x = 1 or (\frac{2}{3})
Users' Answers & Comments(\frac{1}{p}) - (\frac{1}{q}) + (\frac{p}{q}) - (\frac{q}{p}) = (\frac{q - p}{pq}) + (\frac{p^2 - q^2}{pq})
(\frac{q - p}{pq}) x (\frac{pq}{p^2q^2}) = (\frac{q - p}{p^2 q^2})
(\frac{-(p - q)}{(p + q)(p - q)})
= (\frac{-1}{p + q})
Users' Answers & Commentsy2 - 3y > 18 = 3y - 18 > 0
y2 - 6y + 3y - 18 > 0 = y(y - 6) + 3 (y - 6) > 0
= (y + 3) (y - 6) > 0
Case 1 (+, +) (\to) (y + 3) > 0, (y - 6) > 0
= y > -3 y > 6
Case 2 (-, -) (\to) (y + 3) < 0, (y - 6) < 0
= y < -3, y < 6
Combining solution in case 1 and Case 2
= x < -3y < 6
= -3 < y < 6
Users' Answers & Comments(\frac{x + 1}{3}) > (\frac{1}{X + 3}) = (\frac{x + 1}{3}) > (\frac{x + 3}{X + 3})
= (x + 1)(x + 3)2 > 3(x + 3) = (x + 1)[x2 + 6x + 9] > 3(x + 3)
x3 + 7x2 + 15x + 9 > 3x + 9 = x3 + 7x2 + 12x > 0
= x(x + 3)9x + 4) > 0
Case 1 (+, +, +) = x > 0 , x + 3 > 0, x + 4 > 0
= x > -4 (solution only)
Case 2 (+, -, -) = x > 0, x + 4 < 0
= x > 0, x < -3, x < -4 = x < -3(solution only)
Case 3 (-, +, -) = x < 0, x > -3, x < -4 = x < -0, -4 < x < 3(solutions)
Case 4 (-, -, +) = x < 0, x + 3 < 0, x + 4 > 0
= x < 0, x < -5, x > -4 = x < -0, -4 < x < -3(solution)
combining the solutions -4 < x < -3
Users' Answers & Comments