1993 - JAMB Mathematics Past Questions and Answers - page 1
(\int \frac{1 - x}{x^3})
= (\int^{1}{x^3} - \int^{x}{x^3})
= x-3 dx - x-2dx
= (\frac{1}{2x^2} + \frac{1}{x})
Users' Answers & Comments(\begin{array}{c|c} 8 & 71 \ 8 & 8 \text{rem} 7\ 8 & 1 \text{rem} 0\end{array})
= 1078
Users' Answers & Comments9(x - (\frac{1}{2})) 3x2 = 32(x - (\frac{1}{2})) = 3x2
∴ 2(x - (\frac{1}{2})) = x2
2x - 1 = x2
hence x2 - 2x + 1 = 0
(x - 1)(x - 1) = 0
x = 1
Users' Answers & Comments10y x 5(2y - 2) x 4(y - 1) = 1
but 10y - (5 x 2)y = 5y x 2y
= (Law of indices)
5y x 2y x 5(2y - 2) x 4(y - 1)
Users' Answers & Comments(\frac{1}{√3 - 2}) - (\frac{1}{√3 + 2})
L.C.M = (3- 2) (3 + 2)
∴ (\frac{1}{\sqrt{3 - 2}}) - (\frac{1}{\sqrt{3 - 2}}) = (\frac{\sqrt{3 + 2} - \sqrt{3 - 2}}{\sqrt{3 - 2} + \sqrt{3 - 2}})
(\frac{√3 + 2 - √3 + 2}{3 - 2√3 + 2√3 - 4}) = (\frac{4}{3 - 2})
= (\frac{4}{-1})
= -4
Users' Answers & Comments2log3y + log3x2 = 4
log3y2 + log3x2 = 4
∴ log3 (x2y2) = log381(correct all to base 4)
x2y2 = 81
∴ xy = (\pm)9
∴ y = (\pm)(\frac{9}{x})
Users' Answers & Commentslog5(62.5) - log5((\frac{1}{2}))
= log5(\frac{(62.5)}{\frac{1}{2}}) - log5(2 x 62.5)
= log5(125)
= log553 - 3log55
= 3
Users' Answers & CommentsPrincipal = N255.00, Interest = 27.00
year = x Rate: 4%
∴ 1 = (\frac{PRT}{100})
27 = (\frac{225 \times 4 \times T}{100})
2700 = 900T
T = 3 years
Users' Answers & Comments(\sqrt{x^2 + 9}) = x + 1
x2 + 9 = (x + 1)2 + 1
0 = x2 + 2x + 1 - x2 - 9
= 2x - 8 = 0
2(x - 4) = 0
x = 4
Users' Answers & Comments