1994 - JAMB Mathematics Past Questions and Answers - page 4

31
What is the value of sin(-690)?
A
\(\frac{\sqrt{3}}{2}\)
B
-\(\frac{\sqrt{3}}{2}\)
C
\(\frac{-1}{2}\)
D
\(\frac{1}{2}\)
correct option: d
Sin(-690o) = Sin(-360 -3300

sin - 360 = sin 0

∴ sin(-690o) = sin(330o)

Negative angles are measured in clockwise direction

The acute angle equivalent of sin(-330o) = sin(30o)

sin(-330o) = sin(30o)

= \(\frac{1}{2}\)

= 0.5
Users' Answers & Comments
32
If y = 3t3 + 2t2 - 7t + 3, find \(\frac{dy}{dt}\) at t = -1
A
-1
B
1
C
-2
D
2
correct option: c
y = 3t3 + 2t2 - 7t + 3

\(\frac{dy}{dt}\) = 9t2 + 4t - 7

When t = -1

\(\frac{dy}{dt}\) = 9(-1)2 + 4(-1) - 7

= 9 - 4 -7

= 9 - 11

= -2
Users' Answers & Comments
33
Find the point (x, y) on the Euclidean plane where the curve y = 2x2 - 2x + 3 has 2 as gradient
A
(1, 3)
B
(2, 7)
C
(0, 3)
D
(3, 15)
correct option: a
Equation of curve;

y = 2x2 - 2x + 3

gradient of curve;

\(\frac{dy}{dx}\) = differential coefficient

\(\frac{dy}{dx}\) = 4x - 2, for gradient to be 2

∴ \(\frac{dy}{dx}\) = 2

4x - 2 = 2

4x = 4

∴ x = 1

When x = 1, y = 2(1)2 - 2(1) + 3

= 2 - 2 + 3

= 5 - 2

= 3

coordinate of the point where the curve; y = 2x2 - 2x + 3 has gradient equal to 2 is (1, 3)
Users' Answers & Comments
34
Evaluate \(\int^{1}_{-1}\)(2x + 1)2dx
A
3\(\frac{2}{3}\)
B
4
C
4\(\frac{1}{3}\)
D
4\(\frac{2}{3}\)
correct option: d
\(\int^{1}_{-1}\)(2x + 1)2dx

= \(\int^{1}_{-1}\)(4x2 + 4x + 1)dx

= \(\int^{1}_{-1}\)[\(\frac{4x^3}{3}\) + 2x2 + c]

= [\(\frac{4}{3}\) + 3 + c] - [4 + \(\frac{1}{3}\) + c]

= \(\frac{8}{3}\) + 3 + -1 - C

= \(\frac{8}{3}\) + 2

= \(\frac{14}{3}\)

= \(\frac{42}{3}\)
Users' Answers & Comments
35
\(\begin{array}{c|c} x & 1 & 2 & 3 & 4 & 5 \ \hline f & y + 2 & y - 2 & 2y - 3 & y + 4 & 3y - 4\end{array}\)
This table shows the frequency distribution of a data if the mean is \(\frac{43}{14}\) find y
A
1
B
2
C
3
D
4
correct option: b
Users' Answers & Comments
36
Find the mean deviation of the set of numbers 4, 5, 9
A
zero
B
2
C
5
D
6
correct option: b
x = \(\frac{\sum x}{N}\)

= \(\frac{18}{3}\)

= 6

\(\begin{array}{c|c} x & x - x & x - x \ \hline 4 & -2 & 2\ 5 & 1 & 1\ 9 & 3 & 3\ \hline & & 6\end{array}\)

M.D = \(\frac{|x - x|}{N}\)

= \(\frac{6}{3}\)

= 2
Users' Answers & Comments
37
\(\begin{array}{c|c} \text{Class Interval} & 1 - 5 & 6 - 10 & 11 - 15 & 16 - 20 & 21 - 25 \ \hline Frequency & 6 & 15 & 20 & 7 & 2\end{array}\)
Estimate the median of the frequency distribution above
A
10\(\frac{1}{2}\)
B
11\(\frac{1}{2}\)
C
12
D
13
correct option: c
Median = L + [\(\frac{\frac{N}{2} - f}{fm}\)]h

N = Sum of frequencies

L = lower class boundary of median class

f = sum of all frequencies below L

fm = frequency of modal class and

h = class width of median class

Median = 11 + [\(\frac{\frac{50}{2} - 21}{20}\)]5

= 11 + (\(\frac{25 - 21}{20}\))5

= 11 + (\(\frac{(4)}{20}\))

11 + 1 = 12
Users' Answers & Comments
38
\(\begin{array}{c|c} x & 1 & 2 & 3 & 4 & 5 \ \hline f & 2 & 1 & 2 & 1 & 2\end{array}\)
Find the variance of the frequency distribution above
A
\(\frac{3}{2}\)
B
\(\frac{9}{4}\)
C
\(\frac{5}{2}\)
D
3
correct option: b
\(\begin{array}{c|c} x & f & fx & \bar{x} - x & (\bar{x} - x)^2 & f(\bar{x} - x)^2 \ \hline 1 & 2 & 2 & -2 & 4 & 8\ 2 & 1 & 2 & -1 & 1 & 1\ 3 & 2 & 6 & 0 & 0 & 0\ 4 & 1 & 4 & 1 & 1 & 1\ 2 & 2 & 10 & 2 & 4 & 8\ \hline & 8 & 24 & & & 18 \end{array}\)

x = \(\frac{\sum fx}{\sum f}\)

= \(\frac{24}{8}\)

= 3

Variance (62) = \(\frac{\sum f(\bar{x} - x)^2}{\sum f}\)

= \(\frac{18}{8}\)

= \(\frac{9}{4}\)
Users' Answers & Comments
39
In a survey, it was observed that 20 students read newspapers and 35 read novels. If 40 of the students read either newspapers or novels, what is the probability of the students who read both newspapers and novels?
A
\(\frac{1}{2}\)
B
\(\frac{2}{3}\)
C
\(\frac{3}{8}\)
D
\(\frac{3}{11}\)
correct option: c
40 = 20 - x + x + 35 - x

40 = 55 - x

x = 55 - 40

= 15

∴ P(both) \(\frac{15}{40}\)

= \(\frac{3}{8}\)
Users' Answers & Comments
40
The equation of the graph is
A
y = (x - 3)3
B
y = (x + 3)3
C
y = x3 - 27
D
y = -x3 + 27
correct option: c
y = x3 - 27, y = -27 \(\to\) (0, -27)

when y = 0, x = 3 (3, 0)
Users' Answers & Comments
Please share this, thanks: