2005 - JAMB Mathematics Past Questions and Answers - page 1
If 13m + 24m = 41m
1 * m1 + 3 0 + 2 * m1 + 4 * m0 = 4 * m1 + 1 * m0
1 * m + 3 * 1 + 2 * m + 4 * 1 = 4 * m + 1 * 1
m + 3 + 2m + 4 = 4m + 1
3m + 7 = 4m + 1
4m -3m = 7 - 1
m = 6
Users' Answers & Comments(\frac{321_4}{23_4}=\frac{(3\times4^{2})+(2\times4^{1})+(1\times4^{0})}{(2\times4^{0})+(3\times4^{0})}=\frac{3\times16+2\times4+1\times1}{2\times4+3\times1}=\frac{48+8+1}{8+3}=\frac{57}{11}=5\hspace{1mm}remainder\hspace{1mm}2\∴r=2_{10} \ Now\hspace{1mm}convert\hspace{1mm}2_{10} \hspace{1mm}to\hspace{1mm}base\hspace{1mm}4\frac{4}{2} = 2\frac{4}{0}=0\hspace{1mm}or\hspace{1mm}2\∴r=2)
Users' Answers & Comments31/2 - (21/3 * 11/4) + 3/5
= 7/2 - (7/3 * 5/4) + 3/5
= 7/2 - 35/12 + 3/5
= L.C.M = 60
= (210 - 175 + 36)/60
= 71/60
= 111/60
Users' Answers & Comments(I = N4.50, P = N150,T=2\frac{1}{2}\hspace{1mm}years\I=\frac{P\times T\times R}{100}\4.50=\frac{150 \times 2\frac{1}{2} \times R}{100}\frac{4.50}{1}=\frac{150 \times 5 \times R}{100\times 2}\4.50\times 4 = 15R\R=\frac{4.50\times5}{15}\R = \frac{6}{5}\Again\hspace{1mm}I\hspace{1mm}=\frac{P\times T \times R}{100}=\frac{250\times 1 \times 6}{100\times 2\times 5}=\frac{3}{2}=N1.50)
Users' Answers & CommentsLet x = the number of oranges
The 1st received 1/3 of x = 1/3x
∴Remainder = x - 1/3x = 2x/3
The 2nd received 2/3 of 2x/3 = 2/3 * 2x/3 = 4x/3
The 3rd received 12 oranges
∴1/3x + 4x/9 + 12 = x
(3x + 4x + 108)/9 = x
3x + 4x + 108 = 9x
7x + 108 = 9x
9x - 7x = 108
2x = 108
x = 54 oranges
Users' Answers & Comments(\frac{81^{\frac{3}{4}}-27^{\frac{1}{3}}}{3 \times 2^3} = \frac{(3^{3-\frac{3}{4}}-3^{3-\frac{3}{4}})}{3\times 2^3}=\frac{3^3 - 3}{3 \times 8}=\frac{27-3}{24}=\frac{24}{24}=1)
Users' Answers & CommentsLog102 = 0.3010 and Log103 = 0.4771
Log104.5 = Log1041/2
= Log109/2
= Log109 - Log102
= log1032 - Log102
= 2Log103 - Log102
= 2(0.4771) - 0.3010
= 0.9542 - 0.3010
= 0.6532
Users' Answers & Comments(\frac{(\sqrt{12}-\sqrt{3})}{(\sqrt{12}+\sqrt{3})}=\frac{\sqrt{4\times 3}-\sqrt{3}}{\sqrt{4\times 3}+\sqrt{3}}=\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}+\sqrt{3}}=\frac{\sqrt{3}}{3\sqrt{3}}=\frac{1}{3})
Users' Answers & Comments
m = 3, p = -3, q = 7 and r = 5/2
m(p+q+r) = 3(-3 + 7 + 5/2)
= 3(4 + 5/2)
= 3(4 + 21/2)
= 3 * 61/2
= 3 * 13/2
= 39/2
= 19.50
Users' Answers & Comments