2005 - JAMB Mathematics Past Questions and Answers - page 3
Sum of interior ∠s = 1800o
∴(n - 2) 180o = 1800o
180n -360o = 1800o
180n = 1800o + 360o
180n = 2160o
n = 2160o/180o
n = 12 sides
Each exterior ∠ = 360o/n
= 360o/12
= 30o
Users' Answers & Comments∠UOT = 70o and ∠RST = 100o. Calculate ∠RUO.
∠OUT = ∠OTU = a (Base ∠s of 180 Δ)
∴ a + a + 70 = 180o (sum of ∠s of a Δ)
2a = 180o - 70o
2a = 110o
a = 55o
But ∠RUT + ∠RBT = 180o (opposite ∠s of a Cyclic quad)
∴ x + a = 100 = 180
x + 55 + 100 = 180
x = 180 - 155
x = 25
so ∠RUO = x = 25o
Users' Answers & Comments[π = 22/7]
Area of a sector = (\frac{\theta}{360}\times \pi r^2\55=\frac{\theta}{360}\times \frac{22}{7}\times \frac{10\times 10}{1}\theta=\frac{360 \times 55 \times 7}{22 \times 10 \times 10}\theta = 63^{\circ})
Users' Answers & CommentsL2 = 122 + 52
= 144 + 25
= 169
L = √169
= 13
Curved surface Area = πrL
= 5/1 * 13/1 * π
= 65πcm2
Users' Answers & CommentsGradient of the line y + 2x = 5 = -2
Gradient of the line perpendicular to
y + 2x + 5 = 1/2
equation of a line perpendicular to
y + 2x = 5 at the point (4, 3)
y - y1 = m(x - x1)
y - 3 = 1/2(x - 4)
2y - 6 = x -4
2y - x = 2
Users' Answers & CommentsSin 30 = x/14
x =14 sin 30
= 14 * 1/2
= 7
AB = 2x
= 2 * 7 = 14cm
Users' Answers & Commentssin θ = -1/2
= -0.5
θ = sin-1 (0.5)
θ = 30o
Since θ is negative
θ = 180 + 30 = 210o
θ = 360 - 30 = 330o
∴θ = 210o and 330o
Users' Answers & Commentshe diagram x = 44o (alternate ∠s) the bearing of R from S
= 180 + x
= 180 + 44
= 224o
Users' Answers & Commentsy = (1 - 2x)3
let u = 1-2x
du/dx = -2
∴y = u3
dy/du = 3u2
But dy/dx = du/dx * dy/du
= -2 * 3u2
= -6u2
= -6(1-2x)2
At x = -1: dy/dx = -6(1 - 2(-1))2
dy/dx = -6(1 + 2)2
= -6 * 32
= -6 * 9
= -54
Users' Answers & Comments