2005 - JAMB Mathematics Past Questions and Answers - page 3
21
The sum of the interior angle of a regular polygon is 1800o. Calculate the size of one exterior angle of the polygon
A
30o
B
24o
C
18o
D
12o
correct option: a
Sum of interior ∠s = 1800o
∴(n - 2) 180o = 1800o
180n -360o = 1800o
180n = 1800o + 360o
180n = 2160o
n = 2160o/180o
n = 12 sides
Each exterior ∠ = 360o/n
= 360o/12
= 30o
Users' Answers & Comments∴(n - 2) 180o = 1800o
180n -360o = 1800o
180n = 1800o + 360o
180n = 2160o
n = 2160o/180o
n = 12 sides
Each exterior ∠ = 360o/n
= 360o/12
= 30o
22
In the diagram above, O is the center of the circle,
∠UOT = 70o and ∠RST = 100o. Calculate ∠RUO.
∠UOT = 70o and ∠RST = 100o. Calculate ∠RUO.
A
20o
B
25o
C
50o
D
80o
correct option: b
∠OUT = ∠OTU = a (Base ∠s of 180 Δ)
∴ a + a + 70 = 180o (sum of ∠s of a Δ)
2a = 180o - 70o
2a = 110o
a = 55o
But ∠RUT + ∠RBT = 180o (opposite ∠s of a Cyclic quad)
∴ x + a = 100 = 180
x + 55 + 100 = 180
x = 180 - 155
x = 25
so ∠RUO = x = 25o
Users' Answers & Comments∴ a + a + 70 = 180o (sum of ∠s of a Δ)
2a = 180o - 70o
2a = 110o
a = 55o
But ∠RUT + ∠RBT = 180o (opposite ∠s of a Cyclic quad)
∴ x + a = 100 = 180
x + 55 + 100 = 180
x = 180 - 155
x = 25
so ∠RUO = x = 25o
23
A sector of a circle has an area of 55 cm2. If the radius of the circle is 10 cm, calculate the angle of the sector
[π = 22/7]
[π = 22/7]
A
45o
B
63o
C
75o
D
90o
correct option: b
Area of a sector = \(\frac{\theta}{360}\times \pi r^2\55=\frac{\theta}{360}\times \frac{22}{7}\times \frac{10\times 10}{1}\\theta=\frac{360 \times 55 \times 7}{22 \times 10 \times 10}\\theta = 63^{\circ}\)
Users' Answers & Comments24
Find the curved surface area of a cone with circular base diameter 10 cm and height 12 cm
A
25 πcm2
B
65 πcm2
C
120 πcm2
D
156 πcm2
correct option: b
L2 = 122 + 52
= 144 + 25
= 169
L = √169
= 13
Curved surface Area = πrL
= 5/1 * 13/1 * π
= 65πcm2
Users' Answers & Comments= 144 + 25
= 169
L = √169
= 13
Curved surface Area = πrL
= 5/1 * 13/1 * π
= 65πcm2
25
Two lines PQ and ST intersect at 75o. The locus of points equidistant from PQ and ST lies on the
A
perpendicular bisector of PQ
B
perpendicular bisector of ST
C
bisector of the angles between lines PQ and ST
D
bisector of the sngels between lines PT and Qs
correct option: c
Users' Answers & Comments26
Find the equation of the perpendicular at the point (4,3) to the line y + 2x = 5
A
2y - x = 4
B
y + 2x = 3
C
y + 2x = 5
D
2y - x = 2
correct option: d
Gradient of the line y + 2x = 5 = -2
Gradient of the line perpendicular to
y + 2x + 5 = 1/2
equation of a line perpendicular to
y + 2x = 5 at the point (4, 3)
y - y1 = m(x - x1)
y - 3 = 1/2(x - 4)
2y - 6 = x -4
2y - x = 2
Users' Answers & CommentsGradient of the line perpendicular to
y + 2x + 5 = 1/2
equation of a line perpendicular to
y + 2x = 5 at the point (4, 3)
y - y1 = m(x - x1)
y - 3 = 1/2(x - 4)
2y - 6 = x -4
2y - x = 2
27
A chord of a circle subtends an angle of 60o at the length of a circle of radius 14 cm. Find the length of the chord
A
7 cm
B
14 cm
C
21 cm
D
28 cm
correct option: b
Sin 30 = x/14
x =14 sin 30
= 14 * 1/2
= 7
AB = 2x
= 2 * 7 = 14cm
Users' Answers & Commentsx =14 sin 30
= 14 * 1/2
= 7
AB = 2x
= 2 * 7 = 14cm
28
If sin θ = -1/2 for 0 < θ < 360o, the value of θ is
A
30o and 150o
B
150o and 210o
C
210o and 330o
D
150o and 330o
correct option: c
sin θ = -1/2
= -0.5
θ = sin-1 (0.5)
θ = 30o
Since θ is negative
θ = 180 + 30 = 210o
θ = 360 - 30 = 330o
∴θ = 210o and 330o
Users' Answers & Comments= -0.5
θ = sin-1 (0.5)
θ = 30o
Since θ is negative
θ = 180 + 30 = 210o
θ = 360 - 30 = 330o
∴θ = 210o and 330o
29
From the diagram above, find the bearing of R and S
A
226o
B
224o
C
136o
D
134o
correct option: b
he diagram x = 44o (alternate ∠s) the bearing of R from S
= 180 + x
= 180 + 44
= 224o
Users' Answers & Comments= 180 + x
= 180 + 44
= 224o
30
If y = (1 - 2x)2, find the value of dy/dx at x = -1
A
57
B
27
C
-6
D
-54
correct option: d
y = (1 - 2x)3
let u = 1-2x
du/dx = -2
∴y = u3
dy/du = 3u2
But dy/dx = du/dx * dy/du
= -2 * 3u2
= -6u2
= -6(1-2x)2
At x = -1: dy/dx = -6(1 - 2(-1))2
dy/dx = -6(1 + 2)2
= -6 * 32
= -6 * 9
= -54
Users' Answers & Commentslet u = 1-2x
du/dx = -2
∴y = u3
dy/du = 3u2
But dy/dx = du/dx * dy/du
= -2 * 3u2
= -6u2
= -6(1-2x)2
At x = -1: dy/dx = -6(1 - 2(-1))2
dy/dx = -6(1 + 2)2
= -6 * 32
= -6 * 9
= -54