2007 - JAMB Mathematics Past Questions and Answers - page 2
The table above gives the frequency distribution of marks obtained by a group of students in a test. If the total mark scored is 200, the value of y
(3 x 5) + (4(y - 1)) + (5y) + (6 x 9) + (7 x 4) + 8 = 200
15 + 4y - 4 + 5y + 54 + 28 + 8 = 200
9y + 105 - 4 = 200
9y + 101 = 200
9y = 200 - 101
9y = 99
y = 11
Users' Answers & Commentsmean((\bar{x})) = (\frac{\sum x}{n})
= (\frac{7 + 5 + 2 + 1 + 2 + 11}{6}) = 10
M.D = (\frac{7 + 5 + 2 + 1 + 2 + 11}{6})
= (\frac{28}{6})
= 4.7
Users' Answers & Commentsa = 2, r = (\frac{{\frac{3}{2}}}{3})
= (\frac{3}{4})
S(\infty) = (\frac{a}{1 - r})
(\frac{2}{1 - \frac{3}{4}})
= (\frac{2}{\frac{1}{4}})
= 8
Users' Answers & CommentsW (\alpha) L2, (\frac{W}{L^2}) = k(constant)
(\frac{6}{42}) = k
(\frac{W}{(\sqrt{17})^2})
W = (\frac{17 \times 6}{16})
= (\frac{51}{8})
= 6(\frac{3}{8})
Users' Answers & Commentsa (\Delta) b = a + b + 1
a (\Delta) a-1 = e
7 (\Delta) 7-1 = 7 + 7-1
therefore 7-1 = -1 - 8
= -9
the inverse of 7 under the operation (\Delta) is -9
Users' Answers & Comments-3 (x - 2) < -2(x + 3), -3x + 6 < -2x - 6
6 + 6 < 3x - 2x, 12 < x or x > 12
Users' Answers & Commentsf(x) = 3x - 2, f(P) = 3p - 2I
= 3(\begin{pmatrix} 2 & 1 \ -1 & 0 \end{pmatrix}) - 2(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}) = (\begin{pmatrix} 6 & 3 \ -3 & 0 \end{pmatrix}) - (\begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix})
= (\begin{pmatrix} 6 & -2 \ -3 & 0 \end{pmatrix})(\begin{pmatrix} 3 & -0 \ 0 & -2 \end{pmatrix}) = (\begin{pmatrix} 4 & 3 \ -3 & -2 \end{pmatrix})
Users' Answers & Comments2t2 + t - 15 = 2t2 - 5t + 6t - 15
= t(2t - 5) + 3(2t - 5) = (t + 3)(2t - 5)
Users' Answers & Commentsx (\oplus) y = xy + x + y
(-(\frac{3}{4})) (\oplus) 6 = -(\frac{3}{4.6}) - (\frac{3}{4}) + 6
= -(\frac{9}{2}) - (\frac{3}{4}) + 6
= -(\frac{3}{4})
Users' Answers & Comments(x2 + x - 12) (\geq) 0 , (x - 3)(x + 4) (\geq) 0
For the condition to hold, each of (x - 3) and (x + 4) must be of the same sign
.i.e. x - 3 (\geq) 0 and x + 4 (\geq) 0
or x - 3(\leq) 0 and x + 4 (\leq) 0
when x (\geq) 3, the condition is satisfied
when x (\geq) -4, the condition is not satisfied.
when x (\leq) 3, the condition is not satisfied
when x (\leq) -4 , the condition is not satisfied. Thus, the solution of the inequality is x (\geq) 3 or x (\leq) -4 ,
Users' Answers & Comments