2007 - JAMB Mathematics Past Questions and Answers - page 2

11
\(\begin{array}{c|c} Marks & 3 & 4 & 5 & 6 & 7 & 8\\ \hline Frequency & 5 & y - 1 & y & 9 & 4 & 1\end{array}\)
The table above gives the frequency distribution of marks obtained by a group of students in a test. If the total mark scored is 200, the value of y
A
11
B
15
C
9
D
13
correct option: a

(3 x 5) + (4(y - 1)) + (5y) + (6 x 9) + (7 x 4) + 8 = 200

15 + 4y - 4 + 5y + 54 + 28 + 8 = 200

9y + 105 - 4 = 200

9y + 101 = 200

9y = 200 - 101

9y = 99

y = 11

Users' Answers & Comments
12
What is the mean deviation 0f 3, 5, 8, 11, 12 and 21?
A
37
B
60
C
10
D
4.7
correct option: d

mean((\bar{x})) = (\frac{\sum x}{n})

= (\frac{7 + 5 + 2 + 1 + 2 + 11}{6}) = 10

M.D = (\frac{7 + 5 + 2 + 1 + 2 + 11}{6})

= (\frac{28}{6})

= 4.7

Users' Answers & Comments
13
Find the sum to infinity of the series 2 + \(\frac{2}{3}\) + \(\frac{9}{8}\) + \(\frac{27}{32}\) + ....
A
1
B
2
C
4
D
8
correct option: d

a = 2, r = (\frac{{\frac{3}{2}}}{3})

= (\frac{3}{4})

S(\infty) = (\frac{a}{1 - r})

(\frac{2}{1 - \frac{3}{4}})

= (\frac{2}{\frac{1}{4}})

= 8

Users' Answers & Comments
14
W \(\alpha\) L2 and W = 6 when L = 4. If L = \(\sqrt{17}\), find W.
A
6\(\frac{3}{8}\)
B
\(\frac{7}{8}\)
C
\(\frac{1}{8}\)
D
\(\frac{5}{8}\)
correct option: a

W (\alpha) L2, (\frac{W}{L^2}) = k(constant)

(\frac{6}{42}) = k

(\frac{W}{(\sqrt{17})^2})

W = (\frac{17 \times 6}{16})

= (\frac{51}{8})

= 6(\frac{3}{8})

Users' Answers & Comments
15
A binary operation \(\Delta\) is defined is defined by a \(\Delta\) b = a + b + 1 for any real numbers a and b. Find the inverse of the real number 7 under the operation \(\Delta\), if the identify element is -1
A
-1
B
5
C
-7
D
-9
correct option: d

a (\Delta) b = a + b + 1

a (\Delta) a-1 = e

7 (\Delta) 7-1 = 7 + 7-1

therefore 7-1 = -1 - 8

= -9

the inverse of 7 under the operation (\Delta) is -9

Users' Answers & Comments
16
Solve the inequality -3(x - 2) < -2(x + 3)
A
x > -12
B
x > 12
C
x < -12
D
x < 12
correct option: b

-3 (x - 2) < -2(x + 3), -3x + 6 < -2x - 6

6 + 6 < 3x - 2x, 12 < x or x > 12

Users' Answers & Comments
17
If f (x) = 3x - 2, P = \(\begin{pmatrix} 2 & 1 \ -1 & 0 \end{pmatrix}\) and I is 2 X 2 identity matrix, evaluate f(P)
A
\(\begin{pmatrix} 6 & 3 \ -3 & 0 \end{pmatrix}\)
B
\(\begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix}\)
C
\(\begin{pmatrix} 8 & 3 \ -3 & 2 \end{pmatrix}\)
D
\(\begin{pmatrix} 4 & 3 \ -3 & -2 \end{pmatrix}\)
correct option: d

f(x) = 3x - 2, f(P) = 3p - 2I

= 3(\begin{pmatrix} 2 & 1 \ -1 & 0 \end{pmatrix}) - 2(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}) = (\begin{pmatrix} 6 & 3 \ -3 & 0 \end{pmatrix}) - (\begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix})

= (\begin{pmatrix} 6 & -2 \ -3 & 0 \end{pmatrix})(\begin{pmatrix} 3 & -0 \ 0 & -2 \end{pmatrix}) = (\begin{pmatrix} 4 & 3 \ -3 & -2 \end{pmatrix})

Users' Answers & Comments
18
Factorize 2t2 + t - 15
A
(t + 3)(2t - 5)
B
(2t + 3)(t - 5)
C
(2t - 3)(t + 5)
D
(t + 3)(t - 5)
correct option: a

2t2 + t - 15 = 2t2 - 5t + 6t - 15

= t(2t - 5) + 3(2t - 5) = (t + 3)(2t - 5)

Users' Answers & Comments
19
A binary operation \(\oplus\) on real numbers is defined by x \(\oplus\) y = xy + x + y for any two real numbers x and y. The value of (-\(\frac{3}{4}\)) \(\oplus\) 6 is
A
-\(\frac{3}{4}\)
B
\(\frac{45}{4}\)
C
-\(\frac{4}{3}\)
D
\(\frac{3}{4}\)
correct option: d

x (\oplus) y = xy + x + y

(-(\frac{3}{4})) (\oplus) 6 = -(\frac{3}{4.6}) - (\frac{3}{4}) + 6

= -(\frac{9}{2}) - (\frac{3}{4}) + 6

= -(\frac{3}{4})

Users' Answers & Comments
20
The solution of the quadratic inequality (x2 + x - 12) \(\geq\) 0 is
A
x \(\geq\) 3 or x \(\geq\) -4
B
x \(\leq\) 3 or x \(\leq\) -4
C
x \(\geq\) 3 or x \(\leq\) -4
D
x \(\geq\) -3 or x \(\leq\) 4
correct option: c

(x2 + x - 12) (\geq) 0 , (x - 3)(x + 4) (\geq) 0

For the condition to hold, each of (x - 3) and (x + 4) must be of the same sign

.i.e. x - 3 (\geq) 0 and x + 4 (\geq) 0

or x - 3(\leq) 0 and x + 4 (\leq) 0

when x (\geq) 3, the condition is satisfied

when x (\geq) -4, the condition is not satisfied.

when x (\leq) 3, the condition is not satisfied

when x (\leq) -4 , the condition is not satisfied. Thus, the solution of the inequality is x (\geq) 3 or x (\leq) -4 ,

Users' Answers & Comments
Please share this, thanks: