2007 - JAMB Mathematics Past Questions and Answers - page 6

51
The graph above is represented by
A
y = x3 - 3x - 2
B
y = x3 + 2x2 - x - 2
C
y = x3 - 4x2 + 5x - 2
D
y = x3 - 4x + 2
correct option: b
x = -2, x = -1 and x = 1
then the factors; x+2, x+1 and x-1
Product of the factors; (x+2)(x+1)(x-1)
= y = (x + 2)(x2 - x + x - 1)
= y = (x+2)(x2-1)
x3 - x + 2x2 - 2 = y
x3 + 2x2 - x - 2 = y
Users' Answers & Comments
52
Make L the subjects of the formula if \(\sqrt{\frac{42w}{5l}}\)
A
\(\sqrt{\frac{42w}{5d}}\)
B
\(\frac{42W}{5d^2}\)
C
\(\frac{42}{5dW}\)
D
\(\frac{1}{d}\sqrt{\frac{42w}{5}}\)
correct option: b
\(\sqrt{\frac{42w}{5l}}\)
square both side of the equation
\(d^2 = \left(\sqrt{\frac{42W}{5l}}\right)^2\\ d^2 = \frac{42W}{5l}\\ 5ld^2=42W\\ l = \frac{42W}{5d^2}\)
Users' Answers & Comments
53
The solution of the quadratic inequality (x3 + x - 12) ≥ 0 is
A
x ≥ -3 or x ≤ 4
B
x ≥ 3 or x ≥ -4
C
x ≤ 3 or x v -4
D
x ≥ 3 or x ≤ -4
correct option: b
(x3 + x - 12) ≥ 0
(x + 4)(x - 3) ≥ 0
Either x + 4 ≥ 0 implies x ≥ -4
Or x - 3 ≥ 0 implies x ≥ 3
∴ x ≥ 3 or x ≥ -4
Users' Answers & Comments
54
Factorize 2t2 + t - 15
A
(2t - 3)(t + 5)
B
(t + 3)(2t - 5)
C
(t + 3)(t - 5)
D
(2t + 3)(t - 5)
correct option: b
2t2 + t - 15 = (2t-5)(t+3)
Users' Answers & Comments
55
Solve the inequalities -3(x - 2) < -2(x + 3)
A
x > 12
B
x < 12
C
x > -12
D
x < - 12
correct option: a
-3(x-3) < -2(x+3) = -3x + 6 < -2x - 6
-3x + 2x < -6 - 6
-x < - 12
x > -12/-1
x > 12
Users' Answers & Comments
56
W ∝ L2 and W = 6 when L = 4. If L = √17 find W
A
67/8
B
65/8
C
63/8
D
61/8
correct option: c
W ∝ L2
W = KL2
K = W/L2
K = 6/42
K = 6/16 = 3/8
W = 3/8 L2
W = 3/8(√17)2
W = 3/8 x 17
W = 51/8 = 63/8
Users' Answers & Comments
57
A binary operation Δ is defined by aΔb = a + b + 1 for any numbers a and b. Find the inverse of the real number 7 under the operation Δ, if the identity element is -1
A
-7
B
-9
C
5
D
9
correct option: b
a*e = a + e + 1 = a
implies e+ 1 = 0
∴ e = -1
7 * e = -1
∴ a + 7 + 1 = -1
a + 8 = -1
a+8 = -1
a = -1-8
a = -9
Users' Answers & Comments
58
The nth term of the sequence 3/2, 3, 7, 16, 35, 74 ..... is
A
5 . 2n-2 - n
B
5 . 2n-2 - (n+1) / 2
C
3 . 2n-2
D
3/2 n
correct option: a
3/2, 3, 7, 16, 35, 74, ....
Using the method of substitution
When n = 1, 5 . 2n-2 - 1 = 5 . 21-2 - 1
= 5 x 2-1 - 1
= 5 x 1/2 - 1
= 5/2 - 1 = 3/2
When n = 1, 5 . 2n-2 - n
= 5 . 22-2 - 2
= 5 x 20 - 2
= 5 x 1 – 2 = 3
When n = 3, 5 . 2n-2 - n
= 5 . 23-2 - 3
= 5 x 21 - 3
= 5 x 2 – 3
= 10 -3 = 7
When n = 4, 5 . 2n-2 - n
= 5 . 24-2 - 4
= 5 x 22 - 4
= 5 x 4 – 4
= 20 – 4 = 16
When n = 5, 5 . 2n-2 - n
= 5 . 25-2 - 5
= 5 x 23 - 5
= 5 x 8 – 5
= 40 – 5
= 35
When n = 6, 5 . 2n-2 - n
= 5 . 26-2 - 6
= 5 x 24 - 6
= 5 x 16 – 6
= 80 – 6 = 74
∴ 5 . 2n-2 - 1 = 3/2, 3, 7, 16, 35, 74
Users' Answers & Comments
59
Find the sum to infinity of the series \(2+\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+......\)
A
1
B
2
C
8
D
4
correct option: c
\(a=2\\ r = \frac{3}{4}\\ S = \frac{a}{1-r}\\ S= \frac{2}{1-\frac{3}{4}}\\ = \frac{2}{\frac{1}{4}}\\ S = \frac{2}{1}\times \frac{4}{1}\\ = 8\)
Users' Answers & Comments
60
Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)
A
5
B
1
C
7
D
3
correct option: a
\(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\\ \sqrt{4\times 3}-\sqrt{49\times 3}+y\sqrt{3} = 0\\ 2\sqrt{3}-7\sqrt{3}+y\sqrt{3} = 0\\ y\sqrt{3} = 7\sqrt{3} - 2\sqrt{3}\\ y=\frac{5\sqrt{3}}{\sqrt{3}}\\ y = 5\)
Users' Answers & Comments
Please share this, thanks: