2007 - JAMB Mathematics Past Questions and Answers - page 6

51
The graph above is represented by
A
y = x3 - 3x - 2
B
y = x3 + 2x2 - x - 2
C
y = x3 - 4x2 + 5x - 2
D
y = x3 - 4x + 2
correct option: b

x = -2, x = -1 and x = 1

then the factors; x+2, x+1 and x-1

Product of the factors; (x+2)(x+1)(x-1)

= y = (x + 2)(x2 - x + x - 1)

= y = (x+2)(x2-1)

x3 - x + 2x2 - 2 = y

x3 + 2x2 - x - 2 = y

Users' Answers & Comments
52
Make L the subjects of the formula if \(\sqrt{\frac{42w}{5l}}\)
A
\(\sqrt{\frac{42w}{5d}}\)
B
\(\frac{42W}{5d^2}\)
C
\(\frac{42}{5dW}\)
D
\(\frac{1}{d}\sqrt{\frac{42w}{5}}\)
correct option: b

(\sqrt{\frac{42w}{5l}})

square both side of the equation

(d^2 = \left(\sqrt{\frac{42W}{5l}}\right)^2\

d^2 = \frac{42W}{5l}\

5ld^2=42W\

l = \frac{42W}{5d^2})

Users' Answers & Comments
53
The solution of the quadratic inequality (x3 + x - 12) ≥ 0 is
A
x ≥ -3 or x ≤ 4
B
x ≥ 3 or x ≥ -4
C
x ≤ 3 or x v -4
D
x ≥ 3 or x ≤ -4
correct option: b

(x3 + x - 12) ≥ 0

(x + 4)(x - 3) ≥ 0

Either x + 4 ≥ 0 implies x ≥ -4

Or x - 3 ≥ 0 implies x ≥ 3

∴ x ≥ 3 or x ≥ -4

Users' Answers & Comments
54
Factorize 2t2 + t - 15
A
(2t - 3)(t + 5)
B
(t + 3)(2t - 5)
C
(t + 3)(t - 5)
D
(2t + 3)(t - 5)
correct option: b

2t2 + t - 15 = (2t-5)(t+3)

Users' Answers & Comments
55
Solve the inequalities -3(x - 2) < -2(x + 3)
A
x > 12
B
x < 12
C
x > -12
D
x < - 12
correct option: a

-3(x-3) < -2(x+3) = -3x + 6 < -2x - 6

-3x + 2x < -6 - 6

-x < - 12

x > -12/-1

x > 12

Users' Answers & Comments
56
W ∝ L2 and W = 6 when L = 4. If L = √17 find W
A
67/8
B
65/8
C
63/8
D
61/8
correct option: c

W ∝ L2

W = KL2

K = W/L2

K = 6/42

K = 6/16 = 3/8

W = 3/8 L2

W = 3/8(√17)2

W = 3/8 x 17

W = 51/8 = 63/8

Users' Answers & Comments
57
A binary operation Δ is defined by aΔb = a + b + 1 for any numbers a and b. Find the inverse of the real number 7 under the operation Δ, if the identity element is -1
A
-7
B
-9
C
5
D
9
correct option: b

a*e = a + e + 1 = a

implies e+ 1 = 0

∴ e = -1

7 * e = -1

∴ a + 7 + 1 = -1

a + 8 = -1

a+8 = -1

a = -1-8

a = -9

Users' Answers & Comments
58
The nth term of the sequence 3/2, 3, 7, 16, 35, 74 ..... is
A
5 . 2n-2 - n
B
5 . 2n-2 - (n+1) / 2
C
3 . 2n-2
D
3/2 n
correct option: a

3/2, 3, 7, 16, 35, 74, ....

Using the method of substitution

When n = 1, 5 . 2n-2 - 1 = 5 . 21-2 - 1

= 5 x 2-1 - 1

= 5 x 1/2 - 1

= 5/2 - 1 = 3/2

When n = 1, 5 . 2n-2 - n

= 5 . 22-2 - 2

= 5 x 20 - 2

= 5 x 1 – 2 = 3

When n = 3, 5 . 2n-2 - n

= 5 . 23-2 - 3

= 5 x 21 - 3

= 5 x 2 – 3

= 10 -3 = 7

When n = 4, 5 . 2n-2 - n

= 5 . 24-2 - 4

= 5 x 22 - 4

= 5 x 4 – 4

= 20 – 4 = 16

When n = 5, 5 . 2n-2 - n

= 5 . 25-2 - 5

= 5 x 23 - 5

= 5 x 8 – 5

= 40 – 5

= 35

When n = 6, 5 . 2n-2 - n

= 5 . 26-2 - 6

= 5 x 24 - 6

= 5 x 16 – 6

= 80 – 6 = 74

∴ 5 . 2n-2 - 1 = 3/2, 3, 7, 16, 35, 74

Users' Answers & Comments
59
Find the sum to infinity of the series \(2+\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+......\)
A
1
B
2
C
8
D
4
correct option: c

(a=2\

r = \frac{3}{4}\

S = \frac{a}{1-r}\

S= \frac{2}{1-\frac{3}{4}}\

= \frac{2}{\frac{1}{4}}\

S = \frac{2}{1}\times \frac{4}{1}\

= 8)

Users' Answers & Comments
60
Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)
A
5
B
1
C
7
D
3
correct option: a

(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\

\sqrt{4\times 3}-\sqrt{49\times 3}+y\sqrt{3} = 0\

2\sqrt{3}-7\sqrt{3}+y\sqrt{3} = 0\

y\sqrt{3} = 7\sqrt{3} - 2\sqrt{3}\

y=\frac{5\sqrt{3}}{\sqrt{3}}\

y = 5)

Users' Answers & Comments
Please share this, thanks: