2010 - JAMB Mathematics Past Questions and Answers - page 6
Marks | 1 | 2 | 3 | 4 | 5 |
Frequency | 2 | 2 | 8 | 4 | 4 |
The table above show the marks obtained in a given test.
How many student too the test
Marks | 1 | 2 | 3 | 4 | 5 |
Frequency | 2 | 2 | 8 | 4 | 4 |
The table above show the marks obtained in a given test.
Find the mean mark
Mark(χ) | f | fχ |
1 | 2 | 2 |
2 | 2 | 4 |
3 | 8 | 24 |
4 | 4 | 16 |
5 | 4 | 20 |
∑f = 20 | ∑fχ = 66 |
Mean = | ∑fχ |
∑f |
= | 66 |
20 |
= 3.3
</table></table>
Users' Answers & Comments6r78 = 5119
6 x 82 + r x 81 + 7 x 8o = 5 x 92 + 1 x 91 + 1 x 9o
6 x 64 + 8r + 7 x 1 = 5 x 81 + 9 + 1 x 1
384 + 8r + 7 = 405 + 9 + 1
391 + 8r = 24
r = (\frac{24}{8})
= 3
Users' Answers & Comments((\frac{3}{4}) of (\frac{4}{9}) (\div) 9(\frac{1}{2})) (\div) 1(\frac{5}{19})
Applying the rule of BODMAS, we have:
((\frac{3}{4}) x (\frac{4}{9}) (\div)(\frac{24}{19})) (\div)(\frac{24}{19})
((\frac{3}{9}) (\div) (\frac{19}{2})) (\div)(\frac{24}{19}) = ((\frac{3}{9}) x (\frac{2}{19})) (\div)(\frac{24}{19})
((\frac{1}{3}) x (\frac{2}{19})) (\div)(\frac{24}{19})
(\frac{1}{3}) x (\frac{2}{19}) x (\frac{19}{24})
= (\frac{1}{36})
Users' Answers & CommentsActual length of rope = 1.25m
Measured length of rope = 1.26m
error = (1.26 - 1.25)m - 0.01m
Percentage error = (\frac{error}{\text{actual length}}) x 100%
= (\frac{0.01}{1.25}) x 100%
= 0.08%
Using simple interest = (\frac{P \times T \times R}{100}),
where: P denoted principal = N400
T denotes time = 3 years
R denotes interest rate = ?
24 = (\frac{400 \times 3 \times R}{100})
24 x 100 = 400 x 3 x R
R = (\frac{24 \times 100}{400 \times3})
= 2%
Users' Answers & CommentsIf p : q = (\frac{2}{3}) : (\frac{5}{6}), then the sum S1 of ratio = (\frac{2}{3}) + (\frac{5}{6}) = (\frac{9}{6})
If q : r = (\frac{3}{4}) : (\frac{1}{2}), then the sum S2 of ratio = (\frac{3}{4}) + (\frac{1}{2}) = (\frac{5}{4})
Let p + q = T1, then
q = ((\frac{5}{6} \div \frac{9}{6}))T1 = ((\frac{5}{6} \times \frac{6}{9}))T1 = (\frac{5}{9})T1
Again, let q + r = T2, then
q = ((\frac{3}{4} \div \frac{5}{4}))T2 = ((\frac{3}{4} \times \frac{4}{5}))T2 = (\frac{3}{5})T2
Using q = q
(\frac{5}{9})T1 = (\frac{3}{5})T2
5 x 5T1 = 9 x 3T2
(\frac{T_1}{T_2}) = (\frac{9 \times 3}{5 x 5}) = (\frac{27}{5})
Giving that, T1 = 27 and T2 = 25
P = ((\frac{2}{3} \div S_1))T1 = ((\frac{2}{3} \div \frac{9}{6}))T1
= ((\frac{2}{3} \times \frac{6}{9}))27 = 12
q = ((\frac{5}{6} \div S_1))T1 = ((\frac{5}{6} \div \frac{9}{6}))T1
= ((\frac{5}{6} \times \frac{6}{9}))27 = 15
and r = ((\frac{1}{2} \div S_2))T2 = ((\frac{1}{2} \div \frac{5}{4}))T2
= ((\frac{1}{2} \times \frac{4}{5}))25 = 10
Hence p : q : r = 12: 15 : 10
Users' Answers & Commentslog 112 = log(16 x 7)
= log 16 + log7
= log 24 + log7
= 4log2 + log7
= 4(0.3010) + 0.8451
= 1.204 + 0.8451
= 2.0491
Users' Answers & CommentsGiven that,
X (\ast) y = X + y2
(2 (\ast) 3) (\ast) 5 = (2 + 32)(\ast)5
= (2 + 9)(\ast)5 = 11 (\ast)5
Hence 11 (\ast) 5 = 11 + 52
= 11 + 25 = 36
Users' Answers & Comments18(p+q) = (18+p)q
18p + 18q = 18q + pq
By comparison
18p = 18q or p = q
Again, 18q = pq or 18 = p which is required
Users' Answers & Comments