2010 - JAMB Mathematics Past Questions and Answers - page 1

1
If 9x2 + 6xy + 4y2 is a factor of 27x3 - 8y3, find the other factor.
A
2y + 3x
B
2y - 3x
C
3x + 2y
D
3x - 2y
correct option: d

27x3 - 8y3 = (3x - 2y)3

But 9x2 + 6xy + 4y2 = (3x +2y)2

So, 27x3 - 8y3 = (3x - 2y)(3x - 2y)2

Hence the other factor is 3x - 2y

Users' Answers & Comments
2
Factorize completely \(\frac{x^3 + 3x^2 - 10x}{2x^2 - 8}\)
A
\(\frac{x(x - 5)}{2(x + 2)}\)
B
\(\frac{x(x + 5)}{2(x + 2)}\)
C
\(\frac{x(x - 5)}{2(x - 2)}\)
D
\(\frac{x ^2 + 5}{2x + 4}\)
correct option: b

(\frac{x^3 + 3x^2 - 10x}{2x^2 - 8}) = (\frac {x(x^2 + 3x - 10)}{2(x^2 - 4)})

= (\frac {x(x^2 + 5x - 2x - 10)}{2(x + 2)(x - 2)})

= (\frac {x(x - 2)(x + 5)}{2(x + 2)(x - 2)})

= (\frac {x(x + 5)}{2(x + 2)})

Users' Answers & Comments
3
Solve for x and y if x - y = 2 and x2 - y2 = 8
A
(-1, 3)
B
(3, 1)
C
(-3, 1)
D
(1, 3)
correct option: b

x - y = 2 ...........(1)

x2 - y2 = 8 ........... (2)

x - 2 = y ............ (3)

Put y = x -2 in (2)

x2 - (x - 2)2 = 8

x2 - (x2 - 4x + 4) = 8

x2 - x2 + 4x - 4 = 8

4x = 8 + 4 = 12

x = (\frac{12}{4})

= 3

from (3), y = 3 - 2 = 1

therefore, x = 3, y = 1

Users' Answers & Comments
4
If y varies directly as the square root of x and y =3 when x = 16, calculate y when x = 64
A
6
B
12
C
3
D
5
correct option: a

y = (\alpha)√x ........(1)

y = k√x ........(2)

When y = 3, x = 16,

(2) becomes 3 = k√16 or 3 = k x 4

giving k = (\frac{3}{4})

from (2), y = (\frac{3}{4})√x

When x = 64, y = (\frac{3}{4})√64

y = (\frac{3}{4}) x 8

= 6

Users' Answers & Comments
5
If x is inversely proportional to y and x = 2\(\frac{1}{2}\) when y = 2, find x if y = 4
A
4
B
5
C
1\(\frac{1}{4}\)
D
2\(\frac{1}{4}\)
correct option: c

x (\alpha) (\frac{1}{y}) .........(1)

x = k x (\frac{1}{y}) .........(2)

When x = 2(\frac{1}{2})

= (\frac{5}{2}), y = 2

(2) becomes (\frac{5}{2}) = k x (\frac{1}{2})

giving k = 5

from (2), x = (\frac{5}{y})

so when y =4, x = (\frac{5}{y}) = 1(\frac{1}{4})

Users' Answers & Comments
6
For what range of values of x is \(\frac{1}{2}\)x + \(\frac{1}{4}\) > \(\frac{1}{3}\)x + \(\frac{1}{2}\)?
A
x < \(\frac{3}{2}\)
B
x > \(\frac{3}{2}\)
C
x < -\(\frac{3}{2}\)
D
x > -\(\frac{3}{2}\)
correct option: b

(\frac{1}{2})x + (\frac{1}{4}) > (\frac{1}{3})x + (\frac{1}{2})

Multiply through by through by the LCM of 2, 3 and 4

12 x (\frac{1}{2})x + 12 x (\frac{1}{4}) > 12 x (\frac{1}{3})x + 12 x (\frac{1}{2})

6x + 3 > 4x + 6

6x - 4x > 6 - 3

2x > 3

(\frac{2x}{2}) > (\frac{3}{2})

x > (\frac{3}{2})

Users' Answers & Comments
7
Solve the inequalities -6 \(\leq\) 4 - 2x < 5 - x
A
-1 < x < 5
B
-1 < x \(\leq\) 5
C
-1 \(\leq\) x \(\leq\) 6
D
-1 \(\leq\) x < 6
correct option: b

-6 (\leq) 4 - 2x < 5 - x

split inequalities into two and solve each part as follows:

-6 (\leq) 4 - 2x = -6 - 4 (\leq) -2x

-10 (\leq) -2x

(\frac{-10}{-2}) (\geq) (\frac{-2x}{-2})

giving 5 (\geq) x or x (\leq) 5

4 - 2x < 5 - x

-2x + x < 5 - 4

-x < 1

(\frac{-x}{-1}) > (\frac{1}{-1})

giving x > -1 or -1 < x

Combining the two results, gives -1 < x (\leq) 5

Users' Answers & Comments
8
Find the sum to infinity of the following series. 0.5 + 0.05 + 0.005 + 0.0005 + .....
A
\(\frac{5}{8}\)
B
\(\frac{5}{7}\)
C
\(\frac{5}{11}\)
D
\(\frac{5}{9}\)
correct option: d

Using S(\infty) = (\frac{a}{1 - r})

r = (\frac{0.05}{0.5}) = (\frac{1}{10})

S(\infty) = (\frac{0.5}{{\frac{1}{10}}})


= (\frac{0.5}{({\frac{9}{10}})})

= (\frac{0.5 \times 10}{9})

= (\frac{5}{9})

Users' Answers & Comments
9
If \(\begin{vmatrix} x & 3 \ 2 & 7 \end{vmatrix}\) = 15, find the value of x
A
4
B
5
C
2
D
3
correct option: d

If (\begin{vmatrix} x & 3 \ 2 & 7 \end{vmatrix}) = 15

7x - 2 x 3 = 15

7x - 6 = 15

7x = 15 + 6 = 21

therefore x = (\frac{21}{7})

= 3

Users' Answers & Comments
10
Evaluate \(\begin{vmatrix} 2 & 0 & 5 \ 4 & 6 & 3 \ 8 & 9 & 1 \end{vmatrix}\)
A
5y - 2x -18 = 0
B
102
C
-102
D
-42
correct option: c

(\begin{vmatrix} 2 & 0 & 5 \ 4 & 6 & 3 \ 8 & 9 & 1 \end{vmatrix})

= 2(6 - 27) - 0(4 - 24) + 5(36 - 48)

= 2(-21) - 0 + 5(-12)

= -42 + 5(-12)

= -42 - 60

= -102

Users' Answers & Comments
Please share this, thanks: