2010 - JAMB Mathematics Past Questions and Answers - page 1
27x3 - 8y3 = (3x - 2y)3
But 9x2 + 6xy + 4y2 = (3x +2y)2
So, 27x3 - 8y3 = (3x - 2y)(3x - 2y)2
Hence the other factor is 3x - 2y
Users' Answers & Comments(\frac{x^3 + 3x^2 - 10x}{2x^2 - 8}) = (\frac {x(x^2 + 3x - 10)}{2(x^2 - 4)})
= (\frac {x(x^2 + 5x - 2x - 10)}{2(x + 2)(x - 2)})
= (\frac {x(x - 2)(x + 5)}{2(x + 2)(x - 2)})
= (\frac {x(x + 5)}{2(x + 2)})
Users' Answers & Commentsx - y = 2 ...........(1)
x2 - y2 = 8 ........... (2)
x - 2 = y ............ (3)
Put y = x -2 in (2)
x2 - (x - 2)2 = 8
x2 - (x2 - 4x + 4) = 8
x2 - x2 + 4x - 4 = 8
4x = 8 + 4 = 12
x = (\frac{12}{4})
= 3
from (3), y = 3 - 2 = 1
therefore, x = 3, y = 1
Users' Answers & Commentsy = (\alpha)√x ........(1)
y = k√x ........(2)
When y = 3, x = 16,
(2) becomes 3 = k√16 or 3 = k x 4
giving k = (\frac{3}{4})
from (2), y = (\frac{3}{4})√x
When x = 64, y = (\frac{3}{4})√64
y = (\frac{3}{4}) x 8
= 6
Users' Answers & Commentsx (\alpha) (\frac{1}{y}) .........(1)
x = k x (\frac{1}{y}) .........(2)
When x = 2(\frac{1}{2})
= (\frac{5}{2}), y = 2
(2) becomes (\frac{5}{2}) = k x (\frac{1}{2})
giving k = 5
from (2), x = (\frac{5}{y})
so when y =4, x = (\frac{5}{y}) = 1(\frac{1}{4})
Users' Answers & Comments(\frac{1}{2})x + (\frac{1}{4}) > (\frac{1}{3})x + (\frac{1}{2})
Multiply through by through by the LCM of 2, 3 and 4
12 x (\frac{1}{2})x + 12 x (\frac{1}{4}) > 12 x (\frac{1}{3})x + 12 x (\frac{1}{2})
6x + 3 > 4x + 6
6x - 4x > 6 - 3
2x > 3
(\frac{2x}{2}) > (\frac{3}{2})
x > (\frac{3}{2})
Users' Answers & Comments-6 (\leq) 4 - 2x < 5 - x
split inequalities into two and solve each part as follows:
-6 (\leq) 4 - 2x = -6 - 4 (\leq) -2x
-10 (\leq) -2x
(\frac{-10}{-2}) (\geq) (\frac{-2x}{-2})
giving 5 (\geq) x or x (\leq) 5
4 - 2x < 5 - x
-2x + x < 5 - 4
-x < 1
(\frac{-x}{-1}) > (\frac{1}{-1})
giving x > -1 or -1 < x
Combining the two results, gives -1 < x (\leq) 5
Users' Answers & CommentsUsing S(\infty) = (\frac{a}{1 - r})
r = (\frac{0.05}{0.5}) = (\frac{1}{10})
S(\infty) = (\frac{0.5}{{\frac{1}{10}}})
= (\frac{0.5}{({\frac{9}{10}})})
= (\frac{0.5 \times 10}{9})
= (\frac{5}{9})
Users' Answers & CommentsIf (\begin{vmatrix} x & 3 \ 2 & 7 \end{vmatrix}) = 15
7x - 2 x 3 = 15
7x - 6 = 15
7x = 15 + 6 = 21
therefore x = (\frac{21}{7})
= 3
Users' Answers & Comments(\begin{vmatrix} 2 & 0 & 5 \ 4 & 6 & 3 \ 8 & 9 & 1 \end{vmatrix})
= 2(6 - 27) - 0(4 - 24) + 5(36 - 48)
= 2(-21) - 0 + 5(-12)
= -42 + 5(-12)
= -42 - 60
= -102
Users' Answers & Comments