2010 - JAMB Mathematics Past Questions and Answers - page 3
From the table above, if the pass mark is 5, how many students failed the test?
From the table, the number of students who failed the test is given as:
3 + 1 + 5 = 9
Users' Answers & CommentsThe table above shows the marks obtained in a given test. How many students took the test?
from the table, the number of students who took the test is 2 + 2 + 8 + 4 + 4 = 20
Users' Answers & CommentsThe table above shows the marks obtained in a given test. Find the mean mark.
(\begin{array} & Marks(x) & freq.(f) & fx \1 & 2 & 2 \ 2 & 2 & 4 \ 3 & 8 & 24 \ 4 & 4 & 16\ 5 & 4 & 20 \ \hline & \sum f = 20 & \sum fx = 66\end{array})
___________________________________
Mean mark ,(\bar{x}) = (\frac{\sum fx}{\sum f})
= (\frac{66}{20})
(\bar{x}) = 3.3
Users' Answers & CommentsA committee of 2 women and 3 men can be chosen from 6 men and 5 women, in (^{5}C_{2}) x (^{6}C_{3}) ways
= (\frac{5!}{(5 - 2)!2!} \times {\frac{6!}{(6 - 3)!3!}})
= (\frac{5!}{3!2!} \times {\frac{6!}{3 \times 3!}})
= (\frac{5 \times 4 \times 3!}{3! \times 2!} \times {\frac{6 \times 5 \times 4 \times 3!}{3! \times 3!}})
= (\frac{5 \times 4}{1 \times 2} \times {\frac{6 \times 5 \times 4}{1 \times 2 \times 3}})
= 10 x (\frac{6 \times 20}{6})
= 200
Users' Answers & CommentsP(H) = (\frac{1}{2}) and P(T) = (\frac{1}{2})
Using the binomial prob. distribution,
(H + T)3 = H3 + 3H2T1 + 3HT2 + T3
Hence the probability that three heads show in a toss of the three coins is H3
= ((\frac{1}{2}))3
= (\frac{1}{8})
Users' Answers & Comments(\begin{array}& x & x - \bar{x} & (x - \bar{x})^2 \2 & -2 & 4 \ 3 & -1 & 1 \ 5 & 1 & 1 \ 6 & 2 & 4\ \hline \sum x = 16 & & \sum (x - \bar{x}^2) = 0 \end{array})
___________________________________
(\bar{x}) = (\frac{\sum x }{N})
= (\frac{16}{4})
= 4
S = (\sqrt{\frac {(x - \bar{x})^2}{N}})
= (\sqrt{\frac {(10)}{4}})
= (\sqrt{\frac {(5)}{2}})
Users' Answers & CommentsTotal cost = N34,000 + N2,000
= N36,000
15% = N115
(\frac{115}{100}) x N36,000
= N41,400
Users' Answers & CommentsW (\alpha) U
W = ku
u = (\frac{w}{k}); (\frac{2}{7}) x (\frac{3}{5})
= (\frac{6}{35})
Users' Answers & Comments
In the diagram above, < STU = < TRS = 25o
(< between tangent to circle and a circle and a chord through the point of contact = < in the alternate segment)
< RTS = 90o
(< in a semicircle = 90o)
xo + < RTS + < STU = 180o
xo + 90o + 25o = 180o
xo + 115o = 180o
xo = 180o - 115o = 65o
Users' Answers & Comments