2010 - JAMB Mathematics Past Questions and Answers - page 2
P = (\begin{pmatrix} 2 & -3 \ 1 & 1 \end{pmatrix})
|P| = 2 - 1 x -3 = 5
P-1 = (\frac{1}{5})(\begin{pmatrix} 1 & 3 \ -1 & 2 \end{pmatrix})
= (\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix})
Users' Answers & Comments(x + 15)o + (2x - 45)o + (x + 10)o = (2n - 4)90o
when n = 4
x + 15o + 2x - 45o + x - 30o + x + 10o = (2 x 4 - 4) 90o
5x - 50o = (8 - 4)90o
5x - 50o = 4 x 90o = 360o
5x = 360o + 50o
5x = 410o
x = (\frac{410^o}{5})
= 82o
Hence, the value of the least interior angle is (x - 30o)
= (82 - 30)o
= 52o
Users' Answers & CommentsArea of (\Delta)PQR = (\frac{1}{2})bh
= (\frac{1}{2}) x 4 x 5
= 10cm2
Users' Answers & CommentsTotal surface area of the cylindrical pipe = area of circular base + curved surface area
= (\pi)r2 + 2(\pi)rh
= (\pi) x 72 + 2(\pi) x 7 x 50
= 49(\pi) x 700(\pi)
= 749(\pi)m2
Users' Answers & CommentsLet D denote the distance between ((\frac{1}{2}), -(\frac{1}{2})) then using
D = (\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2})
= (\sqrt{(-{\frac{1}{2} - \frac{1}{2}})^2 + (-{\frac{1}{2} - \frac{1}{2}})^2})
= (\sqrt{(-1)^2 + (-1)^2})
= (\sqrt{1 + 1})
= √2
Users' Answers & CommentsLet (x1, y1) = (1, 1) and (x2, y2)= (2, 5)
then gradient m of (\bar{PQ}) is
m = (\frac{y_2 - y_1}{x_2 - x_1}) = (\frac{5 - 1}{2 - 1})
= (\frac{4}{1})
= 4
Users' Answers & Commentscot(\theta) = (\frac{1}{\cos \theta})
= (\frac{8}{15})(given)
tan(\theta) = (\frac{15}{18})
By Pythagoras theorem,
x2 = 152 + 82
x2 = 225 + 64 = 289
x = (\sqrt{289})
= 17
Hence sin(\theta) = (\frac{15}{x})
= (\frac{15}{17})
Users' Answers & CommentsIf y = (2x + 1)3, then
Let u = 2x + 1 so that, y = u3
(\frac{dy}{du}) = 3u2 and (\frac{dy}{dx}) = 2
Hence by the chain rule,
(\frac{dy}{dx}) = (\frac{dy}{du}) x (\frac{du}{dx})
= 3u2 x 2
= 6u2
= 6(2x + 1)2
Users' Answers & CommentsIf y = x sinx, then
Let u = x and v = sinx
(\frac{du}{dx}) = 1 and (\frac{dv}{dx}) = cosx
Hence by the product rule,
(\frac{dy}{dx}) = v (\frac{du}{dx}) + u(\frac{dv}{dx})
= (sin x) x 1 + x cosx
= sinx + x cosx
Users' Answers & Comments(\int^{2}{0}(x^3 + x^2))dx = (\int^{2}{0})((\frac{x^4}{4} + {\frac {x^3}{3}}))
= ((\frac{2^4}{4} + {\frac {2^3}{3}})) - ((\frac{0^4}{4} + {\frac {0^3}{3}}))
= ((\frac{16}{4} + {\frac {8}{3}})) - 0
= (\frac{80}{12}
= {\frac {20}{3}}) or 6(\frac{2}{3})
Users' Answers & Comments