2012 - JAMB Mathematics Past Questions and Answers - page 3
(\begin{vmatrix} 5 & 3 \ x & 2 \end{vmatrix}) = (\begin{vmatrix} 3 & 5 \ 4 & 5 \end{vmatrix})
10 - 3x = 15 - 20
-3x = 15 - 20 - 10
-3x = -15
x = 5
Users' Answers & CommentsRecall that a unit matrice is a diagonal matrix in which the elements in the leading diagonal is unity. Therefore,
I3 = (\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix})
I3 = (+1\begin{vmatrix} 1 & 0 \ 0 & 1 \end{vmatrix} - 0\begin{vmatrix} 0 & 0 \ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \ 0 & 0 \end{vmatrix} )
I3 = +1(1 - 0) - 0(0 - 0) + 0(0 - 0)
= 1(1)
= 1
Users' Answers & CommentsVolume of cuboid = L x b x h
= 0.76cm x 2.6cm x 0.82cm
= 1.62cm3
Users' Answers & CommentsPQ = (\frac{y_1 - y_0}{x_1 - x_0}) = (\frac{-3 - (-7)}{-2 - 5}) = (\frac{-3 + 7}{-2 - 5}) = (\frac{4}{-7})
Users' Answers & CommentsP1 (4, 3), P2 (x, y)
y = 2x + 4 .....(1)
y = 7 - x .....(2)
Substitute (2) in (1)
7 - x = 2x + 4
7 - 4 = 2x + x
3 = 3x
x = 1
Substitute in eqn (2)
y = 7 - x
y = 7 - 1
y = 6
P2 (1, 6)
Distance between 2 points is given as
D = (\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2})
D = (\sqrt{(1 - 4)^2 + (6 - 3)^2})
D = (\sqrt{(-3)^2 + (3)^2})
D = (\sqrt{9 + 9})
D = (\sqrt{18})
D = (\sqrt{9 \times 2})
D = (3\sqrt{2})
Users' Answers & Comments(\frac{y - y_1}{x + x_1}) = (\frac{y_2 - y_1}{x - x_1})
(\frac{y - 1}{x + 2}) = (\frac{4 - 1}{-\frac{1}{2} + 2})
= (\frac{y - 1}{x + 2}) = (\frac{3}{\frac{3}{2}})
y = 2x + 5
Users' Answers & Comments(\theta) = 135o
Cos 135o = Cos(90 + 45)o
= cos90ocos45o - sin90osin45o
= 0cos45o - (1 x (\frac{\sqrt{2}}{2}))
= (-\frac{\sqrt{2}}{2})
Users' Answers & Commentsy = x2 - (\frac{1}{x})
y = x2 - x-1
(\frac{\delta y}{\delta x}) = 2x + x-2
(\frac{\delta y}{\delta x}) = 2x + (\frac{1}{x^2})
Users' Answers & Comments