1994 - WAEC Mathematics Past Questions and Answers - page 1
If the 2nd and 5th terms of a G.P are 6 and 48 respectively, find the sum of the first for term
T\(_{2}\) = ar = 6
T\(_{5}\) = ar\(^{4}\) = 48
\(\frac{T_5}{T_2}\) = \(\frac{ar^{4}}{ar}\) = \(\frac{48}{6}\)
= r\(^{3}\) = 8
⇒ r = 2
S\(_{n}\) = \(\frac{a((r^n) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{a((r^4) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{3((2^4) - 1)}{2 - 1}\)
= 3(16 -1)
= 45
If sin\( \theta \) = K find tan\(\theta\), 0° \(\leq\) \(\theta\) \(\leq\) 90°.
\(\sin \theta = \frac{k}{1}\)
\(\implies 1^2 = k^2 + adj^2\)
\(adj = \sqrt{1 - k^2}\)
\(\therefore \tan \theta = \frac{k}{\sqrt{1 - k^2}}\)
Simplify: \(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)
\(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)
= \(\frac{7}{3} \div \frac{8}{3} \times \frac{8}{7}\)
= \(\frac{7}{3} \times \frac{3}{8} \times \frac{8}{7}\)
= 1
Which of the following is equal to \(\frac{72}{125}\)
\(\frac{72}{125} = \frac{8 \times 9}{5 \times 5 \times 5}\)
= \(\frac{2^3 \times 3^2}{5^3}\)
Express in \( \frac{8.75}{0.025} \)standard form
\(\frac{8.75}{0.025}\)
= \(\frac{8750}{25}\)
= \(350\)
= \(3.5 \times 10^2\)
Evaluate \( \frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)
\(\frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)
= \(\frac{(3^3)^{\frac{1}{3}}}{(2^4)^{-\frac{1}{4}}}\)
= \(\frac{3}{2^{-1}}\)
= 6
Simplify: 16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)
16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)
= \((2^4)^{\frac{5}{4}} \times 2^{-3} \times 1\)
= \(2^5 \times 2^{-3} \times 1\)
= \(2^2\)
= 4.
simplify; 2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16
2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16
= \(\log_3 6^2 + \log_3 12 - \log_3 16\)
= \(\log_{3} (\frac{36 \times 12}{16})\)
= \(\log_{3} (27)\)
= \(\log_{3} 3^3\)
= \(3 \log_{3} 3\)
= 3
What is the number whose logarithm to base 10 is \(\bar{3}.4771\)?
A house bought for N100,000 was later auctioned for N80,000. Find the loss percent.
Loss = N(100,000 - 80,000)
= N20,000.
Loss percentage = \(\frac{20,000}{100,000} \times 100%\)
= 20%