2003 - WAEC Mathematics Past Questions and Answers - page 1
Simplify \(\left(\frac{3}{4} - \frac{1}{3}\right)\times 4\frac{1}{3}\div 3\frac{1}{4}\)
\((\frac{3}{4} - \frac{1}{3}) \times 4\frac{1}{3} \div 3\frac{1}{4}\)
= \((\frac{9 - 4}{12}) \times \frac{13}{3} \div \frac{13}{4}\)
= \(\frac{5}{12} \times \frac{13}{3} \times \frac{4}{13}\)
= \(\frac{5}{9}\)
The table below gives the distribution of marks obtained by a number of pupils in a class test.
The mode of the distribution is
The table below gives the distribution of marks obtained by a number of pupils in a class test.
Find the median of the distribution
The table below gives the distribution of marks obtained by a number of pupils in a class test.
How many pupils scored at least 2 marks?
N30. What is the cost of a pen?
Represent pen with y
∴ 3x+y=35 ---- (i)
2x+2y=30 ---- (ii)
Multiply eqn (i) by 2 and eqn (ii) by 1
6x+2y=70 ---- (iii)
2x+2y=30 ---- (iv)
Subtract eqn (iv) from eqn (iii)
4x = 40
X = 10
Substitute x = 10 in eqn (i)
3x+y=35
3(10)+y=35
Y = 5
∴ The cost of pen is N5.00
= \frac{4(a+2)-1(a-3)}{(a-3)(a+2)}\
=\frac{3a+11}{(a-3)(a+2)}
\)
= \frac{4\sqrt{9\times 2}}{\sqrt{4 \times 2}} = \frac{12\sqrt{2}}{2\sqrt{2}}=\frac{6\sqrt{2}}{\sqrt{2}}\
Rationalising \frac{6\sqrt{2}}{\sqrt{2}}\
=\frac{6\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 6\)
Find the size of reflex ∠WQS
Three men, Bedu, Bakre and Kofi shared' N500 in the ratio 3:2: x respectively. If Bedu’s share is N150, find the value of x.
\(5+x\rightarrow 500\
3 \rightarrow 150\
∴ 3 \times 500 = 150 \times (5+x)\
1500 = 750 + 150x\
x=\frac{750}{150}=5\)
Simplify \(\left(1\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2\)
\(\left(1\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2=\left(\frac{5}{3}\right)^2 - \left(\frac{2}{3}\right)^2\)
Difference of two squares
\(\left(\frac{5}{3}-\frac{2}{3}\right)\left(\frac{5}{3}+\frac{2}{3}\right)=\left(\frac{3}{3}\right)\left(\frac{7}{3}\right)\
\frac{7}{3}=2\frac{1}{3}\)