2010 - WAEC Mathematics Past Questions and Answers - page 4
If x2 + kx + \(\frac{16}{9}\) is a perfect square, find the value of k
x2 + kx + \(\frac{16}{9}\); Perfect square
But, b2 - 4ac = 0, for a perfect square
where a - 1; b = k; c = \(\frac{16}{9}\)
k2 - 4(1) x \(\frac{16}{9}\) = 0
k2 - \(\frac{64}{9}\) = 0
k2 = \(\frac{64}{9}\)
k = \(\sqrt{\frac{64}{9}}\)
k = \(\frac{8}{3}\)
x kmh-1 = y ms-1
(\frac{x km}{1 hr}) = y ms-1
(x \times \frac{1km}{1hr}) = y ms-1
(x \times \frac{1000m}{60 \times 60s}) = y ms-1
(x \times \frac{1000}{3600} \frac{m}{s}) = y ms-1
(x \times \frac{5}{18} ms^{-1})
(x \times \frac{5}{18} ms^{-1}) = y ms-1
y = (\frac{5}{18})x
The mean of the numbers 2, 5, 2x and 7 is less than or equal to 5. Find the range of the values of x
mean \(\leq\) 5; \(\frac{2 + 5 + 2x + 7}{4}\) \(\leq\) 5
= \(\frac{14 + 2x}{4} \leq 5\)
= 14 + 2x \(\leq\) 5 x 4
14 + 2x \(\leq\) 20 ; 2x \(\leq\) 20 - 14
2x \(\leq\) 20 - 14
2x \(\leq\) 6
x \(\leq\) \(\frac{6}{2}\)
x \(\leq\) 3
Pr. (winning 100m race) = (\frac{1}{8})
Pr. (losing 100m race) = 1 - (\frac{1}{8}) = (\frac{7}{8})
Pr. (winning high jump) = (\frac{1}{4})
Pr. (losing high jump ) = 1 - (\frac{1}{4}) = (\frac{3}{4})
Pr. (winning only one) = Pr. (Winning 100m race and losing high jump) or Pr.(Losing 100m race and winning high jump)
= ((\frac{1}{8} \times \frac{3}{4})) + ((\frac{7}{8} \times \frac{1}{4}))
= (\frac{3}{32} + \frac{7}{32})
= (\frac{10}{32})
= (\frac{5}{16})
Joining SQ. In (\bigtriangleup) SPQ,
(22o + a) + 55o + (41o + b) = 180o
121o + a + b = 180o
a + b = 180 - 121
a + b = 59o.....(1)
In (\bigtriangleup) SRPQ; R + a + b = 180o
R + 59o = 180o
(in (1), a + b = 59o)
R = 180 - 59
R = 121o
Pass mark = 50%
No. of students that passed = f50 + f65 + f80
= 45 + 25 + 15
= 85
Percentage of students with marks ranging from 35 to 50 = (\frac{f_{35} + f{40} + f{50}}{\sum f})
= (\frac{35 + 40 + 45}{20 + 35 + 40 + 45 + 25 + 15}) x 100%
= (\frac{120}{180}) x 100%
= 66(\frac{2}{3})%
4m - 15o = m + 75o
(Vertically opposite angles are equal)
4m - m = 75 + 15
3m = 90
m = (\frac{90}{3})
m = 30o
In (\bigtriangleup) PQR,
Q = S = 75o (Corresponding angle)
R = Q = 75o (Base angles of an isosceles (\bigtriangleup))
But, y + 75o = 180o (Sum of angles in a straight line)
y = 180 - 75
y = 105o
(\bigtriangleup) is similar to (\bigtriangleup) HIJ
< HKL = HJI = xo
Hence, (\frac{LH}{JH} = \frac{KH}{JH} \frac{KL}{IJ})
(\frac{LH}{JH} = \frac{KL}{JI})