2010 - WAEC Mathematics Past Questions and Answers - page 3
sum of exterior angles = 360o
Sum of interior angle = (n - 2) x 180
360 = (\frac{1}{2}) x(n - 2) x 180(90o)
360 = (\frac{1}{2}) x(n - 2) x 90o
(\frac{360}{90}) = a - 2
4 = n - 2
n = 4 + 2 = 6
y = (\frac{y(2\sqrt{x^2 + m})}{3N})
3yN = 2((\sqrt{x^2 + m}))
(\frac{3yN}{2} = \sqrt{x^2 + m})
((\frac{3yN}{2})^2 = ( \sqrt{x^2 + m}))
(\sqrt{\frac{9y^2N^2}{4} - \frac{m}{1}})
x = (\frac{\sqrt{9Y^2N^2 - 4m}}{4})
x = (\frac{\sqrt{9y^2N^2 - 4m}}{2})
sequence: -2, 4, -8, 16........{GP}
a = -2; r = (\frac{4}{-2}) = -2
nth term Tn = arn-1
Tn = (-2)(-2)^n-1
Tn = (-2)1 + n - 1
Tn = (-2)n
No. of times = (\frac{\text{Total distance}}{\text{Circumference of circle}})
= (\frac{\text{Total distance}}{\pi d})
= (\frac{1000m}{\frac{22}{7} \times 100m})
= (\frac{1000 \times 7}{2200} = 3.187)
= 3(approx.) nearest whole no.
s.p = N6900
%profit = 15%
%profit = (\frac{s.p - c.p}{c.p}) x 100%
15% = (\frac{6900 - c.p}{c.p}) x 100%
(\frac{15}{100})c.p = N6900 - c.p
0.15 c.p = N6900 - c.p
1.15c.p + c.p = N6900
c.p = (\frac{6900}{1.15})
= 6000.00
Now new S.P = N6600
profit = s.p - c.p = 6000 - 6600
= 600
%profit = (\frac{600}{6600}) x 100%
= 10%
mean age = (\frac{\text{sum of ages}}{\text{no. of men}})
50 = \9\frac{sum}{R})
sum = 50R.....(1)
Sum of ages of the men that left = 55 + 63 = 188
remaining sum = 50R - 118
remaining no. of men = R - 2
now mean age = 50 - 1 = 49 years
49 = (\frac{50R - 118}{R - 2})
49(R - 2) = 50R - 118
49R - 50R = -188 - 98
-R = -20
R = 20
The table is for the relation y = mx + c where m and c are constants. What is the equation of the line described in the tablet?
y = mx + c; when x = 0; y = 1
1 = m(0) + c; 1 = 0 + c; c = 1
when x = 2; y = 2
2 = m(2) + c; 2 = 2m + c; but c = 1
2 = 2m + 1
2 - 1 = 2m
2m = 1
m = (\frac{1}{2})
y = (\frac{1}{2})x + 1
when y = 5; x = ?; y = (\frac{1}{2})x + 1
5 = (\frac{1}{2})x + 1
5 - 1 = (\frac{1}{2})x
4 = (\frac{1}{2})x
x = 4 x 2
x = 8
5 1 6 2seven
-2 6 4 4seven
--------
2 * 1 5
--------
5 1 6 2seven
-2 6 4 4seven
--------
2 2 1 5
--------
the missing number is 2
(x - p)(2x + 1) = 0
2x2 + x - 2px - p = 0
2x2 + x (1 - 2p) - p = 0
2x2 - (2p - 1)x - p = 0
divide through by 2
x2 - (\frac{(2p - 1)}{2})x - (\frac{p}{2}) = 0
compare to x2 - (sum of roots)x + product of roots = 0
sum of roots = (\frac{2p - 1}{2})
But sum of roots = 1
Given; (\frac{2p - 1}{2}) = 1
2p - 1 = 2 x 1
2p - 1 = 2
2p = 2 + 1 = 3
p = (\frac{3}{2})
p = 1(\frac{1}{2})