2010 - WAEC Mathematics Past Questions and Answers - page 5
From the diagram, OP bisects < ROS
< POS = (\frac{1}{2}) < ROS = (\frac{1}{2}) x 66o
3x = 33o
x = (\frac{33^o}{3})
= 11o
Join SR
< PRS = 90o(Angle in a semicircle)
< PRS = 55o (Angle between a chord and a tangent = Angle in the alternate segment)
< PSR + < PRS + < RSP = 180o
90v + 55o + < RSp = 180o
< RSP = 180o - 145o
= 35o
3x = 2 x 60 = 2y (Angle at centre = 2 x angle at circumference)
3x = 2 x 60
x = (\frac{2 \times 60}{3}) = 40o
2 x 60 = 2y
y = 60o
x + y = 40 + 60
= 100o
Using (\frac{x}{a} + \frac{y}{b}) < 1for the equation of the time
where a = intercept on x-axis and b = intercept on y - axis
(\frac{x}{3} + \frac{y}{3} = 1)
= (\frac{x + y}{3} = 1)
= x + y < 3
F = 54o (Alternate triangle angles)
< GHE = F = 54o(Angle between a chord and a tangent = angles in the alternate segment)
Now, < GHE + < EHF + < IHF = 180o(Angles on a straight line)
54o + < EHF + 54o = 180o
< EHF = 180o - 108o
= 72o
Total surface area = sum of the area of the (\bigtriangleup) S + Area of the rectangle
= 2 x Area of (\bigtriangleup) PTQ + 2 x Area of (\bigtriangleup) QUR + Area of rectangle PQRS
2 x (\frac{1}{2})(8 x 4) + 2 x (\frac{1}{2})(5 x 4) + 8 x 5
= 32 + 20 + 40
= 92cm2
Area of remaining = Area of rectangle = Area of semi-circle
22 x 8 - (\frac{1}{2})xar2
ehere r - (\frac{14}{2})cm = 7cm
Area of remaining = 176 - (\frac{1}{2}) x (\frac{22}{4}) x 7 x 7
= 176 - 77
= 99cm2
POQ in a straight line
Hence, < POQ + < QOR = 180o
56o + < QOR = 180o
< QOR = 180o - 56o
= 124o
Now, in (\bigtriangleup) QOR OR = OQ = Radius
< ORQ = < OQR = 2x (Base angles of an Isosceles (\bigtriangleup))
2x + 124 + 2x = 180o
4x + 124 = 180
4x = 180 - 124
4x = 56
x = (\frac{56}{4})
x = 14o
The bearing of x from y = 270o + (\theta)
where (\theta) + 50o = y
in (\bigtriangleup) OXY
O + X + Y = 180o
Where O = 40o + 30o = 70o
70o + 30o + y = 180o
y + 100o = 180o
y = 180o - 100o = 30o
(\theta) + 50o = 80o
80o - 50o = 30o
The bearing of x from y = 270o + 30o = 300o