2010 - WAEC Mathematics Past Questions and Answers - page 2
Solve the inequality: 3(x + 1) \(\leq\) 5(x + 2) + 15
3(x + 1) \(\leq\) 5(x + 2) + 15
3x + 3 \(\leq\) 5x + 10 + 15
3x - 5x \(\geq\) 10 + 15 - 3
-2x \(\geq\) 22
x \(\leq\) \(\frac{-22}{2}\)
x \(\leq\) -11
Volume of water in tank = l x b x h = 180 litres
but 1 litre = 1000cm2
250 x 120 x hw = 180 x 1000
hw = (\frac{180 \times 1000}{250 \times 120})
= 6cm
(\frac{5^{n +3}}{25^{2n -2}}) = 5o
(\frac{5^{n + 3}}{5^{2(2n - 3)}}) = 5o
n + 3 - 4n + 6 = 0
-3n + 9 = 0
-3n = -9
n = (\frac{-9}{-3})
n = 3
pr. (More than one pet)
= (\frac{\text{No. of students with > 1 pet}}{\text{total no. of students}})
= (\frac{5 + 10 + 3}{30})
= (\frac{18}{30})
= (\frac{3}{5})
2(\sqrt{3}) - (\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}})
= 2(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}})
= 2(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}})
= 2(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}})
= 2(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3})
= (\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3})
sin 3y = cos 2y, but sin (\theta) = cos(90 - (\theta))
sin 3y = cos(90 - 3y)
cos(90 - 3y) = cos 2y
90 - 3y = 2y
5y = 90
y = (\frac{90}{5})
y = 18o
l = x; b = x - 1
perimeter = 2(l + b) = 16
l + b = (\frac{16}{2}) = 8
l + b = 8
x + x - 1 = 8
2x = 8 + 1
2x = 9
x = (\frac{9}{2})cm
x = 4(\frac{1}{2})
Given tan x = 1
x = tan-1(1)
x = 45o
Now, (\frac{1 - ( \frac{1}{\sqrt{2} )^2}}{\frac{1}{\sqrt{2}}})
= (\frac{1 - \frac{1}{2}}{\frac{1}{2}})
= (\frac{1}{2} + \frac{1}{\sqrt{2}})
= (\frac{1}{2} \times \frac{1}{\sqrt{2}})
= (\frac{\sqrt{2}}{2})
perimeter = 2(l + b) = 32
l + b = (\frac{32}{2})
l + b = 16
b = 16 - 1.......(1)
Area = l + b = 39
lb = 39 .....(2)
put (1) into (2)
l(16 - 1) = 39
16l - l2 = 39
l2 = 13l - 3l + 39 = 0
l(l - 13) - 3(1 - 13) = 0
(l - 3)(l + 130 = 0
l - 3 = 0 or l - 13 = 0
l = 3cm or l = 13cm; The length in 13cm
(\frac{2}{2 + x} + \frac{2}{2 - x})
(\frac{2(2 - x) + 2(2 + x)}{(2 + x)(2 - x)} = \frac{4 - 2x + 4 + 2x}{4 - 2x + 2x - x^2})
= (\frac{8}{4 - x62})