2012 - WAEC Mathematics Past Questions and Answers - page 3
y = 8(\sqrt{m}); log y = log 8(\sqrt{m})
log y = log 8 + log (\sqrt{m})
log y = log 23 + log m(\frac{1}{2})
log y = 3 log 3 + (\frac{1}{2}) log m
x + 0.4y = 3...(i)
y = (\frac{1}{2})x
x = 2y
x - 2y = 0....(ii)
solve simultaneously; x + 0.4y
= 3 - x - 2y = 0
2.4 = 3
y = (\frac{3 \times 10}{2.4 \times 10} )
= (\frac{30}{24} = \frac{5}{4})
x - 2((\frac{5}{4})) = 0
x - (\frac{5}{2}) = 0
x = (\frac{5}{2})
x + y = (\frac{5}{2} + \frac{5}{4})
(\frac{10 + 5}{4} = \frac{15}{4})
= 3(\frac{3}{4})
((\frac{x -y}{y})); (\frac{3}{1} - \frac{x y}{y})
= (\frac{3y - (x - y)}{y})
= (\frac{3y - x + y}{y})
= (\frac{4y - x}{y})
prime factor of 210 = 2, 3, 5, 7
prime numbers less than 10 = 2, 3, 5 , 7
let the total amount be Nx i.e ((\frac{1}{4}))x + ((\frac{1}{3}))x + 72,000 = x
(\frac{x}{4} + \frac{x}{4} + 72,000 = x)
(\frac{3x + 4x + 86,400}{12} = x)
cross multiply to clear fraction
12x = 3x + 4x + 86,400
12x - 7x = 86,400
5x = 86,400
x - (\frac{86,400}{5}) = 172,800
amount spent on food = (\frac{1}{4} \times 172,800)
= N43,200
((\frac{27}{125}))-(\frac{1}{3}) x ((\frac{4}{9}))(\frac{1}{2})
= ((\frac{3^3}{5^3}))-(\frac{1}{3})-(\frac{1}{3}) x ((\frac{3^2}{3^2}))(\frac{1}{2}) -(\frac{1}{2})
= (\frac{3^{-1}}{3^{-1}} \times \frac{2}{3})
= (\frac{\frac{1}{3}}{\frac{1}{5}} \times \frac{2}{3})
(\frac{1}{3} \times \frac{5}{1} \times {2}{3} = \frac{10}{9})
Sum = (n - 2)180
1800 = (n - 2)180
divide both sides by 180o
(\frac{1800}{180}) = (n - 2)(\frac{180}{180})
10 = n - 2
10 + 2 = n
n = 12
((\frac{m}{2} - 1\frac{1}{4}))(m + (\frac{2}{3}))
((\frac{m}{2} - \frac{3}{2}))((\frac{m}{1} + \frac{2}{3}))
= (\frac{m^2}{3} + \frac{3m}{6} - \frac{6}{6})
= (\frac{2m - 9m}{6})
= (\frac{-7m}{6})
= 1(\frac{1}{6})
The volume of a cuboid is 54cm3. If the length, width and height of the cuboid are in the ratio 2:1:1 respectively, find its total surface area
V = L x B x H
V = \(2x \times x \times x = 2x^3\)
= 54cm3
i.e. 2x3 = 54
x3 = \(\frac{54}{2}\) = 27
x = 3\(\sqrt{27}\)
x = 3
L = 2x i.e. 2 x 3 = 6cm
B = x i.e. x = 3cm
H = x i.e. x = 3cm
but A = 2(LB + LH + BH) = 2(6 x 3) + (6 x 3) + (3 x 3) = 2(18 + 18 + 9) = 2(45)
= 90cm2