2013 - WAEC Mathematics Past Questions and Answers - page 1
2.7 x 10-4 x 6.3 x 106
= 2.7 x 6.3 x 10-4 x 106
= 17.01 x 10-4 + 6
= 17.01 x 102
= 1.701 x 101 x 102
= 1.701 x 101 + 2
= 1.701 x 103
9(2 - x) = 3
32(2 - x) = 3
2(2 - x) = 1
4 - 2x = 1
-2x = 1 - 4
-2x = -3
x = (\frac{-3}{-2})
x = (\frac{3}{2})
(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}})
from numerator (1 \frac{7}{8} \times 2 \frac{2}{5})
= (\frac{15}{8} \times \frac{12}{5})
= (\frac{3 \times 3}{2 \times 1} = \frac{9}{2})
from denominator (6\frac{3}{4} \div \frac{3}{4})
= (\frac{27}{4} \div \frac{3}{4})
= (\frac{27}{4} \times \frac{4}{3})
= (\frac{9 \times 1}{1 \times 1} = \frac{9}{1})
(\frac{9}{2} \div \frac{9}{1} = \frac{9}{2} \times \frac{1}{9})
= (\frac{1}{2})
Un = n(n2 + 1)
U5 = 5(2 + 1)
= 5(25 + 1)
= 5(26) = 130
U4 = 4(42 + 1) = 4(16 + 1)
= 4(17) = 68
U5 - U4 = 130 - 68
= 62
(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}})
(\sqrt{50} - \frac{2}{\sqrt{2}}) = K(\sqrt{8})
= (\sqrt{2} \times 25 - \frac{2}{\sqrt{2}})
= K (\sqrt{4 \times 2})
(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}) = 2K(\sqrt{2})
(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2})
(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2})
(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1})
= 2k(\sqrt{2} \times \sqrt{2}) = 8
2k (\sqrt{4}) = 8
2k x 2 = 8
4k = 8
k = (\frac{8}{4})
k = 2
% error = (\frac{error}{\text{actual value}} \times 100)
error = N72 - N68 = 4
actual value = N72
%error = (\frac{4}{72} \times 100)
= (\frac{100}{18} = \frac{50}{9}) = 5(\frac{5}{9})%
4 oranges sell for Nx, 1 orange will sell for (\frac{Nx}{4})
24 oranges will sell for: (\frac{Nx}{4} \times 24) = n6x
3 mangoes sell for Ny, 1 mango will sell for (\frac{Ny}{3})
12 mangoes will sell for (\frac{Ny}{3} \times 12) = 4Ny
total money pay N6x + N4y = N(6x + 4y)
(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)})
(\frac{(x + y)(x - y)}{(x + y)(x + y)} + \frac{(x - y)(x - y)}{3(x + y)})
= (\frac{3}{x - y})
(\frac{2x - 5}{2} < \frac{(2 - x)}{1})
2x - 5 < 4 - 2x
2x + 2x < 4 + 5
4x < 9
x < (\frac{9}{4})
x < 2(\frac{1}{4})