2013 - WAEC Mathematics Past Questions and Answers - page 3

21
If p = (y : 2y \(\geq\) 6) and Q = (y : y -3 \(\geq\) 4), where y is an integer, find p\(\cap\)Q
A
{3, 4}
B
{3, 7}
C
{3, 4, 5, 6, 7}
D
{4, 5, 6}
correct option: c

p = (y : 2y (\geq) 6)

2y (\leq) 6

y (\leq \frac{6}{2})

y = (\leq) 3

and Q = (y : y -3 (\geq) 4)

y - 3 (\geq) 4

y (\geq) 4 + 3

y (\geq) 7

therefore p = {3, 4, 5, 6, 7} and Q = {7, 6, 5, 4, 3....}

P(\cap)Q = {3, 4, 5, 6, 7}

Users' Answers & Comments
22
Find the values of k in the equation 6k2 = 5k + 6
A
{\(\frac{-2}{3}, \frac{-3}{2}\)}
B
{\(\frac{-2}{3}, \frac{3}{2}\)}
C
{\(\frac{2}{3}, \frac{-3}{2}\)}
D
{\(\frac{2}{3}, \frac{3}{2}\)}
correct option: b

6k2 = 5k + 6

6k2 - 5k - 6 = 0

6k2 - 0k + 4k - 6 = 0

3k(2k - 3) + 2(2k - 3) = 0

(3k + 2)(2k - 3) = 0

3k + 2 = 0 or 2k - 3 = 0

3k = -2 or 2k = 3

k = (\frac{-2}{3}) or k = (\frac{3}{2})

k = ((\frac{-2}{3}), k = (\frac{3}{2}))

Users' Answers & Comments
23
If y varies directly s the square root of (x + 1) and y = 6 when x = 3, find x when y = 9
A
8
B
7
C
6
D
5
correct option: a

y (\alpha) \sqrt{x + 1}), y = k\sqrt{x + 1})

6 = k(\sqrt{3 + 1})

6 = k(\sqrt{4})

6 = 2k

k = (\frac{6}{2}) = 3

y = (\sqrt{(x + 1)})

9 = 3(\sqrt{(x + 1)})(divide both side by 3)

(\frac{9}{3}) = (\frac{3\sqrt{x + 1}}{3})

3 = (\sqrt{x + 1})(square both sides)

9 = x + 1

x = 9 - 1

x = 8

Users' Answers & Comments
24
The graph of the relation y = x2 + 2x + k passes through the point (2, 0). Find the values of k
A
zero
B
-2
C
-4
D
-8
correct option: d

y = x2 + 2x + k at point(2,0) x = 2, y = 0

0 = (2)2 + 2(20 + k)

0 = 4 + 4 + k

0 = 8 + k

k = -8

Users' Answers & Comments
25
What is the locus of the point X which moves relative to two fixed points P and M on a plane such that < PXM = 30o
A
thebisector of the straight line joining P and M
B
an arc of a circle with PM as a chord
C
the bisector of angle PXM
D
a circle centre X and radius PM
correct option: b
Users' Answers & Comments
26
When a number is subtracted from 2, the result equals 2 less than one-fifth of the number. Find the number
A
11
B
\(\frac{15}{2}\)
C
5
D
\(\frac{5}{2}\)
correct option: c

Let the number be y, subtract y from 2 i.e 2 - y

2 - y = 4 < (\frac{1}{5}) x y, 2 - y = 4 < (\frac{y}{5})

2 - y - 4 < (\frac{y}{5})

2 - 4 - y (\frac{x}{5} - 4), multiplying through by 5

5(2 - x) = 5((\frac{x}{5})) - 5(4)

10 - 5x = x - 20

-5x - x = -20 - 10

-6x = -30

x = (\frac{-30}{-6})

= 5

Users' Answers & Comments
27
Express \(\frac{2}{x + 3} - \frac{1}{x - 2}\) as a simple fraction
A
\(\frac{x - 7}{x^2 + x - 6}\)
B
\(\frac{x - 1}{x^2 + x - 6}\)
C
\(\frac{x - 2}{x^2 + x - 6}\)
D
\(\frac{x - 27}{x^2 + x - 6}\)
correct option: a

(\frac{2}{x + 3} - \frac{1}{x - 2}) = (\frac{2(x - 2) - (x - 3)}{(x + 3) (x - 2)})

= (\frac{2x - 4 - x - 3}{x^2 - 2x + 3x - 6})

= (\frac{x -7}{x^2 + x - 6})

= (\frac{x - 7}{x^2 + x - 6})

Users' Answers & Comments
28
An interior angle of a regular polygon is 5 times each exterior angle. How many sides has the polygon?
A
15
B
12
C
9
D
6
correct option: b

Let the interior angle = xo

interior angle = 5xo (sum of int. angle ann exterior)

(angles = angle or straight line)

6x = 180

x = (\frac{180}{6})

x = 30o

no. of sides = (\frac{\text{sum of exterior angles}}{\text{exterior angle}})

= (\frac{360}{30}) = 12

Users' Answers & Comments
29
Given that P = x2 + 4x - 2, Q = 2x - 1 and Q - p = 2, find x
A
-2
B
-1
C
1
D
2
correct option: b

P = x2 + 4x - 2, Q = 2x - 1

Q - p = 2, (2x - 1) - (x2 + 4x - 2) = 2

2x - 1 - x2 - 4x + 2 = 2

-2x - x2 + 1

-x2 - 2x - 1 = 0

x2 + 2x + 1 = 0

x2 + x + x + 1 = 0

x(x + 1) + 1(x + 1) = 0

(x + 1)(x + 1) = 0

x + 1 = 0 or x + 1 = 0

x = -1 or x = -1

x = -1

Users' Answers & Comments
30
A pyramid has a rectangular base with dimensions 12m by 8m. If its height is 14m, calculate the volume
A
322m3
B
448m3
C
632m2
D
840m2
correct option: b

Volume of pyramid = (\frac{1}{3}) x base area x height

= (\frac{1}{3} \times 12^4 \times 8 \times 14)

= 4 x 8 x 14 = 448m3

Users' Answers & Comments
Please share this, thanks: