2015 - WAEC Mathematics Past Questions and Answers - page 4
T = (\sqrt{\frac{TK - H}{K - H}})
Taking the square of both sides, give
T2 = (\frac{TK - H}{K - H})
T2(K - H) = TK - H
T2K - T2H = TK - H
T2K - TK = T2H - H
K(T2 - T) = H(T2 - 1)
K = (\frac{H(T^2 - 1)}{T^2 - T})
The area of a rhombus is 110 cm\(^2\). If the diagonals are 20 cm and (2x + 1) cm long, find the value of x.
Diagonal |AC| = (2x + 1)cm
In the diagram,area of \(\Delta\)ABC
is \(\frac{110}{2}\) = \(\frac{1}{2}\) x |AC| x |HB|
55 = \(\frac{1}{2}\) x (2x + 1) x 10
55 = (2x + 1)5
55 = 10x + 5
55 - 5 = 10x
50 = 10x
x = \(\frac{50}{10}\)
= 5.0
Simplify: \(\frac{3x - y}{xy} - \frac{2x + 3y}{2xy} + \frac{1}{2}\)
\(\frac{3x - y}{xy} - \frac{2x + 3y}{2xy} + \frac{1}{2}\)
= \(\frac{2(3x - y) - 1(2x + 3y) + xy}{2xy}\)
= \(\frac{6x - 2y - 2x - 3y + xy}{2xy}\)
= \(\frac{4x - 5y + xy}{2xy}\)
Let x represent the entire farmland
then, (\frac{2}{5})x + (\frac{1}{3})[x - (\frac{2}{3}x)] + M = x
Where M represents the part of the farmland used for growing maize, continuing
(\frac{2}{5})x + (\frac{1}{3})x [1 - (\frac{2}{3}x)] + M = x
(\frac{2}{5}x + \frac{1}{3})x [(\frac{3}{5})] + M = x
(\frac{2}{5})x + (\frac{1x}{5}) + M = x
(\frac{3x}{5} + M = x)
M = x - (\frac{2}{5})x
= x[1 - (\frac{3}{5})]
= x[(\frac{2}{5})] = (\frac{2x}{5})
Hence the part of the land used for growing maize is
(\frac{2}{5})
R (\alpha) D2
R = D2K
R = 4 Litres when D = 15cm
thus; 4 = 152k
4 = 225k
k = (\frac{4}{225})
This gives R = (\frac{4D^2}{225})
Where R = 9litres
equation gives
9 = (\frac{4D^2}{225})
9 x 225 = 4d2
D2 = (\frac{9 \times 225}{4})
D = (\sqrt{9 \times 225}{4})
= (\frac{3 \times 15}{2})
= 22(\frac{1}{2})km
Cost price CP of the 100 oranges = (\frac{100}{5}) x N40.00
selling price SP of the 100 oranges = (\frac{100}{20}) x N120
= N600.00
so, profit or loss per cent
= (\frac{SP - CP}{CP}) x 100%
= (\frac{600 - 800}{800}) x 100%
= (\frac{-200}{800}) x 100%
Hence, loss per cent = 25%
(\frac{1}{4})p + 3p = 10...(1)
2p - (\frac{1}{3})q = 7...(2)
Multiply equation (2) by 3 to clear fraction
3 x 2p - 3 x (\frac{1}{3})q = 3 x 7
6p - q = 21
6p - 21 = q....(3)
substituting 6p - 21 for q in (1)
(\frac{1}{4})p + 3(6p - 21) = 10...(4)
Multiply equation (4) by 4 to clear fraction
4 x (\frac{1}{4})p + 4 x 3(6p - 21) = 4 x 10
p + 12(6p - 21) = 40
p + 72p - 252
73p = 292
p = (\frac{292}{73})
= 4
mean = (\bar{x}) = (\frac{\sum x}{n})
= (\frac{5 + 3 + 0 + 7 + 2 + 1}{6})
(\frac{18}{6}) = 3
(\begin{array}{c|c}
x & x - \bar{x} & |x - \bar{x}|\ \hline 5 & -2 & 2 \ \hline 3 & 0 & 0 \ \hline 0 & -3 & 3 \ \hline 7 & 4 & 4 \ \hline 2 & -1 & 1 \ \hline 1 & -2 & 2 \ \hline & & & \sum|x - \bar{x}| \ \hline & & & 12
\end{array})
hence, MD = (\frac{\sum|x - \bar{x}}{n}|)
(\frac{12}{6})
= 2