1990 - JAMB Mathematics Past Questions and Answers - page 3
Let his assistant work for x days
∴ his master worked (x + 10) day. Amount received by master = 40(x + 10),
amount got by his assistance = 10x
Total amount collected = N2000.00
∴ 40(x + 10) + 10x = 2000
= 40x + 400 + 10x
= 2000
50x + 400 = 2000
50x = 2000 - 400
50x = 1600
x = (\frac{1600}{50})
x = 32 days
Users' Answers & Comments(\frac{x}{x + y}) + (\frac{y}{x - y}) - (\frac{x^2}{x^2 - y^2})
(\frac{x}{x + y}) + (\frac{y}{x - y}) - (\frac{x^2}{(x + y)(x - y})
= (\frac{x(x - y) + y(x + y) - x^2}{(x + y)(x - y})
= (\frac{x^2 + xy + xy + y^2 - x^2}{(x + y)(x - y})
= (\frac{y^2}{(x + y)(x - y)})
= (\frac{y^2}{(x^2 - y^2)})
Users' Answers & CommentsGiven that x2 + y2 + z2 = 194, calculate z if x = 7 and (\sqrt{y}) = 3
x = 7
∴ x2 = 49
(\sqrt{y}) = 3
∴ y2 = 81 = x2 + y2 + z2 = 194
49 + 81 + z2 = 194
130 + z2 = 194
z2 = 194 - 130
= 64
z = (\sqrt{64})
= 8
Users' Answers & Comments3 + 6 + 12 + .....18thy term
1st term = 3, common ratio (\frac{6}{3}) = 2
n = 18, sum og GP is given by Sn = a(\frac{(r^n - 1)}{r - 1})
s18 = 3(\frac{(2^{18} - 1)}{2 - 1})
= 3(217 - 1)
Users' Answers & Commentsx + x + 1
(\frac{dy}{dx}) = 2x + 1
At the turning point, (\frac{dy}{dx}) = 0
2x + 1 = 0
x = -(\frac{1}{2})
(\frac{d^2y}{dx^2}) = 2 > 0(min Pt)
= (\frac{1}{4}) + (\frac{1}{2})
= 1
Users' Answers & CommentsLength of Arc AB = (\frac{\theta}{360}) 2(\pi)r
= (\frac{48}{360}) x 2(\frac{22}{7}) x (\frac{21}{2})
= (\frac{4 \times 22 \times \times 3}{30}) (\frac{88}{10}) = 8.8cm
Perimeter = 8.8 + 2r
= 8.8 + 2(10.5)
= 8.8 + 21
= 29.8cm
Users' Answers & CommentsFor a regular polygon of n sides
n = (\frac{360}{\text{Exterior angle}})
Exterior < = 180o - 140o
= 40o
n = (\frac{360}{40})
= 9 sides
Users' Answers & CommentsCos (\theta) = (\frac{12}{13})
x2 + 122 = 132
x2 = 169- 144 = 25
x = 25
= 5
Hence, tan(\theta) = (\frac{5}{12}) and cos(\theta) = (\frac{12}{13})
If cos2(\theta) = 1 + (\frac{1}{tan^2\theta})
= 1 + (\frac{1}{\frac{(5)^2}{12}})
= 1 + (\frac{1}{\frac{25}{144}})
= 1 + (\frac{144}{25})
= (\frac{25 + 144}{25})
= (\frac{169}{25})
Users' Answers & Comments