1990 - JAMB Mathematics Past Questions and Answers - page 4
(\frac{h_1}{h_2}) = (\frac{2}{3})
h2 = (\frac{2h_1}{3})
(\frac{r_1}{r_2}) = (\frac{9}{8})
r2 = (\frac{9r_1}{8})
v1 = (\pi)((\frac{9r_1}{8}))2((\frac{2h_1}{3}))
= (\pi)r1 2h1 x (\frac{27}{32})
v = (\frac{\pi r_1 2h_1 \times \frac{27}{32}}{\pi r_1 2h_1}) = (\frac{27}{32})
v2 : v1 = 27 : 32
Users' Answers & CommentsGiven that 4, 16, 30, 20, 10, 14 and 26
Adding up = 120
nos (\geq) 16 are 16 + 30 + 20 + 26 = 92
The requires sum of angles = (\frac{92}{120}) x (\frac{360^o}{1})
= 276o
Users' Answers & CommentsMean of 10 numbers = 16
The total sum of numbers = 16 x 10 = 160
Mean of 11 numbers = 18
Total sum of numbers = 11 x 18
= 198
The 11th no. = 198 - 160
= 38
Users' Answers & Comments\(\begin{array}{c|c} Scores & 1 & 2 & 3 & 4 & 5 & 6 \ \hline \text{No. of students} & 1 & 4 & 5 & 6 & x & 2\end{array}\)
If the average scores is 3.5, find the value of x
(\begin{array}{c|c} Scores & 1 & 2 & 3 & 4 & 5 & 6 \ \hline \text{No. of students} & 1 & 4 & 5 & 6 & x & 2\end{array})
Average = 3.5
3.5 = (\frac{(1 \times 1) + (2 \times 4) + (3 \times 5) + (4 \times 6) + 5x + (6 \times 2)}{1 + 4 + 5 + 6 + x + 2})
(\frac{3.5}{1}) = (\frac{1 + 8 + 15 + 24 + 5x + 12}{18 + x})
(\frac{3.5}{1}) = (\frac{60 + 5x}{18 + x})
60 + 5x = 3.5(18 (\div) x)
60 + 5x = = 63 + 1.5x
5x - 1.5x = 63 - 60
1.5x = 3
x = (\frac{3}{1.5})
(\frac{30}{15}) = 2
Users' Answers & Comments(\begin{array}{c|c} 1 & 2 & 3 & 4\hline 1(1, 1) & (1, 2) & (1, 3) & (1, 4)\ \hline 2(2, 1) & (2 , 2) & (2, 3) & (2, 4) \ \hline 3(3, 1) & (3, 2) & (3, 3) & (3, 4)\ \hline 4(4, 1) & (4, 2) & (4, 3) & (4, 4)\end{array})
sample space = 16
sum of nos. removed are (2), 3, (4), 5
3, (4), 5, (6)
(4), 5, (6), 7
(5), 6, 7, (8)
Even nos. = 8 of them
Pr(even sum) = (\frac{8}{16})
= (\frac{1}{2})
Users' Answers & CommentsGiven from 41 to 56
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56
The nos multiple of 9 are: 45, 54
P(multiple of 9) = (\frac{2}{16})
= (\frac{1}{8})
Users' Answers & Comments
The required equation is y = x2 - x - 2
i.e. B where the graph touches the graph touches the x-axis y = 0
x2 - x - 2 = 0 = (x + 1)(x - 2) = 0
Hence roots of the equation are -1 and 2 as shown in the graph
Users' Answers & Comments
Since PS = QS = RS
S is the centre of circle passing through P, Q, R /PS/ = /RS/ = radius
QPR (\pm) (\frac{100^o}{2}) = 50o
Users' Answers & Comments