1990 - JAMB Mathematics Past Questions and Answers - page 1
4(\frac{3}{4}) - 6(\frac{1}{4})
(\frac{19}{4}) - (\frac{25}{4})............(A)
(\frac{21}{5}) - (\frac{5}{4}).............(B)
Now work out the value of A and the value of B and then find the value (\frac{A}{B})
A = (\frac{19}{4}) - (\frac{25}{4})
= (\frac{-6}{4})
B = (\frac{21}{5}) x (\frac{5}{20})
= (\frac{105}{20})
= (\frac{21}{4})
But then (\frac{A}{B}) = (\frac{-6}{4})
(\frac{21}{4}) = (\frac{-6}{4}) (\div) (\frac{21}{4})
= (\frac{-6}{4}) x (\frac{4}{21})
= (\frac{-24}{84})
= (\frac{-2}{7})
Users' Answers & Commentsa2bx + ab2x; a2b - b2
abx(a + b); b(a2 - b2)
b(a + b)(a + b)<br />
∴ H.C.F. = (a + b)
Users' Answers & Commentsfirst work out the expression and then correct the answer to 4 s.f = 241.34..............(A)
(3 x 103)2............(B)
= 32x
= (\frac{1}{10^3}) x (\frac{1}{10^3})
(Note that x2 = (\frac{1}{x^3}))
= 24.34 x 32 x (\frac{1}{10^6})
= (\frac{2172.06}{10^6})
= 0.00217206
= 0.002172(4 s.f)
Users' Answers & CommentsInterest I = (\frac{PRT}{100})
∴ R = (\frac{100 \times 1}{100 \times 5})
= (\frac{100 \times 7.50}{500 \times 5})
= (\frac{750}{500})
= (\frac{3}{2})
= 1.5%
Users' Answers & CommentsYou can use any whole numbers (eg. 1. 2. 3) to represent all the mangoes in the basket.
If the first child takes (\frac{1}{4}) it will remain 1 - (\frac{1}{4}) = (\frac{3}{4})
Next, the second child takes (\frac{3}{4}) of the remainder
which is (\frac{3}{4}) i.e. find (\frac{3}{4}) of (\frac{3}{4})
= (\frac{3}{4}) x (\frac{3}{4})
= (\frac{9}{16})
the fraction remaining now = (\frac{3}{4}) - (\frac{9}{16})
= (\frac{12 - 9}{16})
= (\frac{3}{16})
Users' Answers & Comments(\frac{0.00275 \times 0.0064}{0.025 \times 0.08})
Removing the decimals = (\frac{275 \times 64}{2500 \times 800})
= (\frac{88}{10^4})
88 x 10-4 = 88 x 10-1 x 10-4
= 8.8 x 10-3
Users' Answers & Commentsuse "T" to represent the total profit. The first receives (\frac{1}{3}) T
remaining, 1 - (\frac{1}{3})
= (\frac{2}{3})T
The seconds receives the remaining, which is (\frac{2}{3}) also
(\frac{2}{3}) x (\frac{2}{3}) x (\frac{4}{9})
The third receives the left over, which is (\frac{2}{3})T - (\frac{4}{9})T = ((\frac{6 - 4}{9}))T
= (\frac{2}{9})T
The third receives (\frac{2}{9})T which is equivalent to N12000
If (\frac{2}{9})T = N12, 000
T = (\frac{12 000}{\frac{2}{9}})
= N54, 000
Users' Answers & Comments(\sqrt{160r^2 + 71r^4 + 100r^8})
Simplifying from the innermost radical and progressing outwards we have the given expression
(\sqrt{160r^2 + 71r^4 + 100r^8}) = (\sqrt{160r^2 + 81r^4})
(\sqrt{160r^2 + 9r^2}) = (\sqrt{169r^2})
= 13r
Users' Answers & Comments3 log69 + log612 + log664 - log672
= log693 + log612 + log664 - log672
log6729 + log612 + log664 - log672
log6(729 x 12 x 64) = log6776
= log665 = 5 log66 = 5
N.B: log66 = 1
Users' Answers & Comments