1990 - JAMB Mathematics Past Questions and Answers - page 2
Simplify ((\frac{1}{x^{-1}} + \frac{1}{y^{-1}}))-1 = ((\frac{1}{x^{-1}} + \frac{1}{y^{-1}}))-1
= (x + y)-1 = (\frac{(x)}{y})
= (\frac{x}{y})
Users' Answers & Comments(ab2 - bc2)(a2c - abc)
[2(2)2 - (- 2x(\frac{1}{2}))] [22(-(\frac{1}{2})) - 2(-2)(-(\frac{1}{2}))]
[8 = (\frac{1}{2})][-2 - 2] = (\frac{17}{2}) x 42
= -34
Users' Answers & Commentsf(x - 4) = x2 + 2x + 3
To find f(2) = f(x - 4)
= f(2)
x - 4 = 2
x = 6
f(2) = 62 + 2(6) + 3
= 36 + 12 + 3
= 51
Users' Answers & Comments9(x + y)2 - 4(x - y)2
Using difference of two squares which says
a2 - b2 = (a + b)(a - b) = 9(x + y)2 - 4(x - y)2
= [3(x + y)]2 - [2(x - y)]-2
= [3(x + y) + 2(x - y) + 2(x - y)][3(x + y) - 2(x - y)]
= [3x +3y + 2x - 2y][3x + 3y - 2x + 2y]
= (5x + y)(x + 5y)
Users' Answers & Commentsa2 + b2 = 16 and 2ab = 7
To find all possible values = (a - b)2 + b2 - 2ab
Substituting the given values = (a - b)2
= 16 - 7
= 9
(a - b) = (\pm)9
= (\pm)3
OR a - b = 3, -3
Users' Answers & Commentsx + (\frac{1}{x}) = 4, find x2 + (\frac{1}{x^2})
= (x + (\frac{1}{x}))2 = x2 + (\frac{1}{x^2}) + 2
x2 + (\frac{1}{x^2}) = ( x + (\frac{1}{x^2}))2 - 2
= (4)2 - 2
= 16 - 2
= 14
Users' Answers & Comments(2x (\frac{-1}{4})2 = 4x2 + (\frac{1}{x^2}) - 4
what must be added is +(\frac{1}{x^2})
Users' Answers & Commentsx - 8(\sqrt{x}) + 15 = 0
x + 15 = 8(\sqrt{x})
square both sides = (x + 15)2 = (8 (\sqrt{x})2
x2 + 225 + 30x = 64x
x2 + 225 + 30x - 64x = 0
x2 - 34x + 225 = 0
(x - 9)(x - 25) = 0
x = 9 or 25
Users' Answers & Comments