1990 - JAMB Mathematics Past Questions and Answers - page 2

11
Simplify (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1
A
\(\frac{x}{y}\)
B
xy
C
\(\frac{x}{y}\)
D
(xy)-1
correct option: c

Simplify ((\frac{1}{x^{-1}} + \frac{1}{y^{-1}}))-1 = ((\frac{1}{x^{-1}} + \frac{1}{y^{-1}}))-1

= (x + y)-1 = (\frac{(x)}{y})

= (\frac{x}{y})

Users' Answers & Comments
12
If a = 2, b = -2 and c = -\(\frac{1}{2}\), evaluate (ab2 - bc2)(a2c - abc)
A
2
B
-28
C
-30
D
-34
correct option: d

(ab2 - bc2)(a2c - abc)

[2(2)2 - (- 2x(\frac{1}{2}))] [22(-(\frac{1}{2})) - 2(-2)(-(\frac{1}{2}))]

[8 = (\frac{1}{2})][-2 - 2] = (\frac{17}{2}) x 42

= -34

Users' Answers & Comments
13
If f(x - 4) = x2 + 2x + 3, Find, f(2)
A
6
B
11
C
27
D
51
correct option: d

f(x - 4) = x2 + 2x + 3

To find f(2) = f(x - 4)

= f(2)

x - 4 = 2

x = 6

f(2) = 62 + 2(6) + 3

= 36 + 12 + 3

= 51

Users' Answers & Comments
14
Factorize 9(x + y)2 - 4(x - y)2
A
(x + y)(5x + y)
B
(x + y)2
C
(x + 5y)(5x + y)
D
5(x + y)2
correct option: c

9(x + y)2 - 4(x - y)2

Using difference of two squares which says

a2 - b2 = (a + b)(a - b) = 9(x + y)2 - 4(x - y)2

= [3(x + y)]2 - [2(x - y)]-2

= [3(x + y) + 2(x - y) + 2(x - y)][3(x + y) - 2(x - y)]

= [3x +3y + 2x - 2y][3x + 3y - 2x + 2y]

= (5x + y)(x + 5y)

Users' Answers & Comments
15
If a2 + b2 = 16 and 2ab = 7.Find all the possible values of (a - b)
A
3, -3
B
2, -2
C
1, -1
D
3, -1
correct option: a

a2 + b2 = 16 and 2ab = 7

To find all possible values = (a - b)2 + b2 - 2ab

Substituting the given values = (a - b)2

= 16 - 7

= 9

(a - b) = (\pm)9

= (\pm)3

OR a - b = 3, -3

Users' Answers & Comments
16
Divide x3 - 2x2 - 5x + 6 by (x - 1)
A
x2 - x - 6
B
x2 - 5x + 6
C
x2 - 7x + 6
D
x2 - 5x - 6
correct option: a
Users' Answers & Comments
17
If x + \(\frac{1}{x}\) = 4, find x2 + \(\frac{1}{x^2}\)
A
16
B
14
C
12
D
9
correct option: b

x + (\frac{1}{x}) = 4, find x2 + (\frac{1}{x^2})

= (x + (\frac{1}{x}))2 = x2 + (\frac{1}{x^2}) + 2

x2 + (\frac{1}{x^2}) = ( x + (\frac{1}{x^2}))2 - 2

= (4)2 - 2

= 16 - 2

= 14

Users' Answers & Comments
18
What must be added to 4x2 - 4 to make it a perfect square?
A
\(\frac{-1}{x^2}\)
B
\(\frac{1}{x^2}\)
C
1
D
-1
correct option: b

(2x (\frac{-1}{4})2 = 4x2 + (\frac{1}{x^2}) - 4

what must be added is +(\frac{1}{x^2})

Users' Answers & Comments
19
Find the solution of the equation x - 8\(\sqrt{x}\) + 15 = 0
A
3, 5
B
-3, -5
C
9, 25
D
-9, 25
correct option: c

x - 8(\sqrt{x}) + 15 = 0

x + 15 = 8(\sqrt{x})

square both sides = (x + 15)2 = (8 (\sqrt{x})2

x2 + 225 + 30x = 64x

x2 + 225 + 30x - 64x = 0

x2 - 34x + 225 = 0

(x - 9)(x - 25) = 0

x = 9 or 25

Users' Answers & Comments
20
The perimeter of a rectangular lawn is 24m. If the area of the lawn is 35m2; how wide is the lawn?
A
5cm
B
7m
C
12m
D
14m
correct option: a
Users' Answers & Comments
Please share this, thanks: