1991 - JAMB Mathematics Past Questions and Answers - page 4

31
Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)
A
(x2 - 1)-\(\frac{1}{2}\)
B
(x2 - 1)1
C
(x2 - 1)
D
(x2 - 1)-1
correct option: a

x2(x2 - 1)-(\frac{1}{2}) - (x2 - 1)(\frac{1}{2}) = (\frac{x^2}{(x^2 - 1)^\frac{1}{2}}) - (\frac{(x^2 - 1)^\frac{1}{2}}{1})

= (\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}})

= (\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}})

= (x2 - 1)-(\frac{1}{2})

Users' Answers & Comments
32
Find the gradient of the line passing through the points (-2, 0) and (0, -4)
A
2
B
-4
C
-2
D
4
correct option: c

Given (-2, 0) and (0, -4)

Gradient = (\frac{-4 - 0}{0 - (-2)})

= (\frac{-4}{2})

= -2

Users' Answers & Comments
33
At what value of x is the function y = x2 - 2x - 3 minimum?
A
1
B
-1
C
-4
D
4
correct option: a

For y = ax2 - bx + c for minimum y

(\frac{dy}{dx}) = 2x - 2

= (\frac{dy}{dx}) = 0

∴ 2x - 2 = 0

x = 1

Users' Answers & Comments
34
Find the sum of the 20 term in an arithmetic progression whose first term is 7 and last term is 117
A
2480
B
1240
C
620
D
124
correct option: b
Users' Answers & Comments
35
The area of a square is 144 sq cm. Find the length of its diagonal
A
11\(\sqrt{3cm}\)
B
12cm
C
12\(\sqrt{2cm}\)
D
13cm
correct option: c

BD = (\sqrt{x^2 + x^2})

= (\sqrt{12^2 + 12^2})

= (\sqrt{144 + 144})

= 2(144)

= 12(\sqrt{2cm})

Users' Answers & Comments
36
One angle of a rhombus is 60o. The shorter of the two diagonals is 8cm long. Find the length of the longer one.
A
8\(\sqrt{3}\)
B
\(\frac{16}{\sqrt{3}}\)
C
\(\sqrt{3}\)
D
\(\frac{10}{\sqrt{3}}\)
correct option: a

(\frac{x}{4}) = (\frac{\tan 60}{1})

x = 4 tan60

= 4(\sqrt{3})

BD = 2x

= 8(\sqrt{3})

Users' Answers & Comments
37
If the exterior angles of a pentagon are xo, (x + 5)o, (x + 10), (x + 15)o and (x + 20)o, find x
A
118o
B
72o
C
62o
D
36o
correct option: c
Users' Answers & Comments
38
A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64o and 62o respectively. Find the length of the flagstaff.
A
60 (tan 62o - tan 64o)
B
60 (cot 64o - cot 62o)
C
60 (cot 62o - cot 64o)
D
60 (tan 64o - tan 62o)
correct option: d

(\frac{BC}{60}) = (\frac{tan 62}{1})

BC = 60 tan 62

(\frac{AC}{60}) = (\frac{tan 62}{1})

AC = 60 tan 64

AB = AC - BC

= 60(tan 64o - tan 62o)

Users' Answers & Comments
39
Simplify cos2 x (sec2x + sec2 x tan2x)
A
tan x
B
tanx secx
C
\(\frac{1 + tan^2x}{sec^2x}\)
D
cosec2x
correct option: c

cos2 x (sec2x + sec2 x tan2x)

= (\frac{cos^2x}{cos^2x}) x (\frac{cos^2x sin^2x}{cos^2x cos^2x})

= (\frac{1 + sin^2x}{cos^2x})

= (\frac{1 + tan^2x}{sec^2x})

Users' Answers & Comments
40
If cos x = \(\sqrt{\frac{a}{b}}\) find coses x
A
\(\frac{b}{\sqrt{b - a}}\)
B
\(\sqrt{\frac{b}{a}}\)
C
\(\sqrt{\frac{b}{b - a}}\)
D
\(\sqrt{\frac{b - a}{a}}\)
correct option: c

cosx = (\sqrt{\frac{a}{b}})

y2 + (\sqrt{(a)^2}) = (\sqrt{(b)^2}) by pythagoras

y2 = b - a

∴ y = b - a

cosec x = (\frac{1}{sin x}) = (\frac{1}{y})

(\frac{b}{y}) = (\frac{\sqrt{b}}{\sqrt{b - a}})

= (\sqrt{\frac{b}{b - a}})

Users' Answers & Comments
Please share this, thanks: