2004 - JAMB Mathematics Past Questions and Answers - page 4
ac - 2bc - a2 + 4b2
ac - 2bc - (a2 - 4b2)
ac - 2bc - (a2 -(2b)2)
c(a - 2b) - {(a - 2b)(a + 2b)}
(a - 2b)(c - (a + 2b))
(a - 2b)(c - a - 2b)
Users' Answers & Comments(a=\frac{1}{2}\r=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{6}\times\frac{2}{1}=\frac{1}{3}\S_n = \frac{a}{1-r}\S_n = \frac{\frac{1}{2}}{1-\frac{1}{3}}=\frac{\frac{1}{2}}{\frac{3}{2}}=\frac{1}{2}\times\frac{3}{2}=\frac{3}{4})
Users' Answers & CommentsL ∝ T2
L = KT2
K = L/T2 (when T = 4s, L = 64 cm)
K = 64/42
K = 64/16 = 4
∴ ∠ = 4T2
∠ = 4 * 92
= 324 cm
Users' Answers & CommentsFirst teacher received (\frac{2}{5}) ∴Remainder (= 1 - \frac{2}{5} = \frac{3}{5})
2nd teacher received; (\frac{2}{15} of \frac{3}{5} = \frac{2}{15} \times \frac{3}{5} = \frac{2}{25})
3rd teacher will receive; (1-\frac{2}{5}-\frac{2}{25}=\frac{25-10-2}{15}=\frac{13}{25})
Users' Answers & Comments6logx2 - 3logx3 = 3log50.2
= logx26 - 3logx33 = log5(0.2)3
= logx(64/27) = log5(1/5)3
logx(64/27) = log5(1/125)
let logx(64/27) = y
∴xy = 64/27
and log5(1/125) = y
∴ 5y = 1/125
5y = 125-1
5y = 5-3
∴ y = -3
substitute y = -3 in xy = 64/27
implies x-3 = 64/27
1/x3 = 64/27
64x3 = 27
x3 = 27/64
x3 = 3√27/64
x = 3/4
Users' Answers & Comments4516 - P7 = 3056
P7 = 4516 - 3056
P7 = 1426
convert 1426 = 1 * 62 + 4 * 61 + 2 * 60
= 36 + 24 + 2
= 62
Convert 6210 to base 7
62/7 = 8 R 6
8/7 = 1 R 1
1/7 = 0 R 1
∴P7 = 1167
Users' Answers & Comments3√42x = 16
this implies that (3√42x)3 = (16)3
42x = 42*3
42x = 46
∴ 2x = 6
x = 3
Users' Answers & Comments(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\Numerator \hspace{1mm}\frac{1}{10}\times\frac{2}{3}+\frac{1}{4} = \frac{1}{5}+\frac{1}{4}=\frac{4+15}{60}=\frac{19}{60}\denominator\hspace{1mm}= \frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}=\frac{1}{2}\times\frac{5}{3}-\frac{1}{4}=\frac{5}{6}-\frac{1}{4}=\frac{10-3}{12}=\frac{7}{12}\frac{Numerator}{denominator}=\frac{\frac{19}{60}}{\frac{7}{12}}=\frac{19}{60}\times\frac{12}{7}=\frac{19}{35})
Users' Answers & Comments
(\frac{1}{\sqrt{3}+2}=\frac{1}{\sqrt{3}+2}\times \frac{\sqrt{3}-2}{\sqrt{3}-2}=\frac{\sqrt{3}-2}{(\sqrt{3})^{2} -2^{2}}=\frac{\sqrt{3}-2}{3-4}=\frac{\sqrt{3}-2}{1}=-\sqrt{3}+2=2-\sqrt{3})
Users' Answers & Comments