2008 - JAMB Mathematics Past Questions and Answers - page 5
ACCEPTANCE = 10 Letters
A = 2 letters
C = 3 letters
E = 2 letters
Can be arranged in 10! / (2!3!2!) ways
Users' Answers & Comments(^{10}C_6 = \frac{10!}{(10-6)!6!}\
=\frac{10!}{4!6!}\
=\frac{10\times 9\times 8 \times 7 \times 6!}{4\times 3\times 2\times 1 \times 6!}\
=210)
Users' Answers & CommentsOBSTRUCTION
Total possible outcome = 11
Number of chance of getting T = 2
P(picking T) = 2/11
Users' Answers & Comments
Total possible outcome
12+18+x+30+2x+45 = 105+3x
∴105+3x = 150
3x = 150-105
3x = 45
x = 15
P(obtaining 5) = (\frac{2x}{(105+3x)}But x= 15\
=\frac{2(15)}{(105+3(15))}\
=\frac{30}{(105+45)}\
=\frac{30}{150}\
=\frac{1}{5})
Users' Answers & CommentsIf 125x = 2010, find x
125x = 1 x 32 + 2 x 31 + 5 x 30
= 1 x 9 + 2 x 3 + 5 x 1
= 9 + 6 + 5
= 20
therefore, 1253 = 2010
x = 3
Users' Answers & Comments(\frac{\frac{3}{8} \div \frac {1}{2} - \frac{1}{3}}{\frac{1}{8} \times \frac {2}{3} + \frac{1}{3}})
= (\frac{\frac{3}{8} \times \frac {2}{1} - \frac{1}{3}}{\frac{1}{8} \times \frac {2}{3} + \frac{1}{3}})
= (\frac{\frac{6}{8} - \frac{1}{3}}{\frac{2}{24} + \frac{1}{3}})
= (\frac{\frac {18 - 8}{24}}{\frac{2 + 8}{24}}) = (\frac{\frac{10}{24}}{\frac{10}{24}})
= (\frac{10}{24}) (\div) (\frac{10}{24})
= (\frac{10}{24}) x (\frac{24}{10}) = 1
Users' Answers & CommentsCalculate the simple interest on N7500 for 8 years at 5% per annum
S.I = (\frac{P \times R \times T}{100})
S.I = (\frac{7500 \times 5 \times 8}{100})
S.I = (\frac{300000}{100})
S.I = N3000
Users' Answers & Comments