2008 - JAMB Mathematics Past Questions and Answers - page 6
Simplify 16(\frac{1}{2}) x 4(\frac{1}{2}) x 27(\frac{1}{3})
= 16(\frac{1}{2}) x 4(\frac{1}{2}) x 27(\frac{1}{3})
= (\frac{1}{\sqrt{16}^1} \times \frac{1}{\sqrt{4}^1}) x (3(\sqrt{27}))1
= (\frac{1}{4}) x (\frac{1}{2}) x (\frac{3}{1})
= (\frac{3}{8})
Users' Answers & Comments(logX^{\frac{1}{2}}) 64 = 3, find the value of X
recall that X = 10p
log10X = P
64 = (X^{\frac{1}{2}})
43 = (X^{\frac{1}{2}})
(4^{3 \times \frac{1}{2}}) = (X^{\frac{1}{2} \times \frac{1}{3}})
4 = (X^{\frac{1}{2}})
(4)2 = (X^{\frac{1}{2} \times 2})
x = 16
Users' Answers & Comments(\frac{1 + \sqrt{2}}{1 - \sqrt{2}}) x (\frac{1 + \sqrt{2}}{1 + \sqrt{2}})
= (\frac{(1 + \sqrt{2}) (1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})})
= (\frac{1 + \sqrt{2} + \sqrt{2} + (\sqrt{2})^2}{1 + \sqrt{2} - \sqrt{2} - (\sqrt{2})^2})
= (\frac{1 + 2\sqrt{2} + \sqrt{2}}{1^2 - 2})
= (\frac{3 + 2\sqrt{2}}{-1})
-3 - 2(\sqrt{2}) = x + y(\sqrt{2})
x = -3, y = -2
= (-3, -2)
Users' Answers & CommentsX = {n2 + 1 : n = 0, 2, 3}
y = {n + 1 : n = 2, 3, 4, 5}
find x ∩ y
x = (n2 + 1)(22 + 1)(32 + 1)
y = (2 + 1) (3 + 1)(5 + 1)
x = {1, 5, 10}
y = {3, 4, 6}
x ∩ y = (\Phi)
Users' Answers & CommentsL = (\frac {4}{3}) m (\sqrt{PQ})
make Q the subject
(\frac {L}{1}) = (\frac {4}{3}) m (\sqrt{PQ})
3L = 4m (\sqrt{PQ})
Taking the square of both sides
(3L)2 = (4m (\sqrt{PQ}))
(\frac {9L^2}{16m^2P}) = (\frac {16m^2PQ}{16m^2P})
Q = (\frac {9L^2}{16m^2P})
Users' Answers & Comments(4x + 3y)2 - (3x - 2y)2
= 16x2 + 24xy + 9y - (9x2 - 12xy + 4y2)
= 7x2 + 36xy + 5y
= 7x2 + xy + 35xy + 5y2
= (7x2 + xy) + (35xy + 5y2)
= x(7x + y) + 5y(7x + y)
= (7x + y)(x + 5y)
Users' Answers & Commentsx - 3 x y2
x - 3 = ky2
when x = 5, y = 2
5 - 3 = k(2)2
2 = 4k
k = (\frac{2}{4})
k = (\frac{1}{2})
Find x when y = 6
from x - 3 = ky2
x - 3 = (\frac{1}{2})ky2
x - 3 = (\frac{1}{2}) x 36
x - 3 = 18
x = 18 + 3
x = 21
Users' Answers & CommentsP (\alpha) (\frac{1}{q^2})
p = (\frac{k}{q^2})
k = pq2
k = 8 x 42
k = 8 x 16 = 128
find k = pq2
q2 = (\frac{k}{p})
q = (\frac{k}{p})
q = (\frac{128}{32})
q = √4
q = (\pm)2
Users' Answers & Comments