2008 - JAMB Mathematics Past Questions and Answers - page 7

61
Find the range of values of x which satisfy the equalities 4x - 7 \(\leq\) 3x and 3x - 4 \(\leq\) 4x
A
-4 \(\leq\) x \(\leq\) 7
B
-7 \(\leq\) x \(\leq\) 4
C
x \(\geq\) -7
D
-7 \(\leq\) x \(\leq\) 6
correct option: a

4x - 7 (\leq) 3x

4x - 3x (\leq) 7

x (\leq) 7

ii. 3x - 4 (\leq) 4x

3x - 4x (\leq) 4

-x (\leq) -4

-4 (\leq) x (\leq) 7

Users' Answers & Comments
62
Solve the quadratic inequality x2 - 5x + 6 \(\geq\) 0
A
x \(\leq\) 2, x \(\geq\) 3
B
x \(\leq\) 3, x \(\geq\) 2
C
x \(\leq\) -2, x \(\geq\) -3
D
x \(\leq\) -3,x \(\geq\) 2
correct option: a

x2 - 5x + 6 (\geq) 0

x2 - 2x - 3x + 6 (\geq) 0

x(x - 2) - 3(x - 2) (\geq) 0

(x - 2) (x - 3) (\geq) 0

x (\geq) 2 or (\geq) 3

x (\leq) 2 (\geq)

Users' Answers & Comments
63
The fifth term of an A.p. is 24 and the eleventh term is 96. Find the first term
A
12
B
4
C
-12
D
-24
correct option: d

In = a + (n - 1)d

24 = a + (5 - 1)d

24 = a + 4d.......(i)

96 = a + (11 - 1)d

96 = a + 10d.......(ii)

a = 24 - 4d.......(iii)

96 = 24 - 4d + 10d

96 = 24 + 6d

96 - 24 = 6d

72 = 6d

d = (\frac{72}{6})

d = 12

a = 24 - 4d

a = 24 - 4 x 12

a = 24 - 48

a = -24

Users' Answers & Comments
64
A binary operation defines \(\ast\) on the set of positive integers is such that x \(\ast\) y = 2x - 3y + 2 for all positive integers x and y. The binary operation is
A
commutative and closed on the set of positive integers
B
neither commutative nor closed on the set of positive integers
C
commutative but not closed on the set of positive integers
D
not commutative but closed on the set of positive integers
correct option: b

a (\ast) b = b (\ast) a

x (\ast) y = y (\ast) x

2x - 3y + 2 (\neq) 2y - 3y - 3x + 2

2 (\ast) 3 = 2(2) -3(3) + 2

= 4 - 9 + 2

= -3

1 (\ast) 2 = 2(1) - 3(2) + 2

= 2 - 6 + 2

= 2 - 6 + 2

= -2

Users' Answers & Comments
65
a binary operation on the set of real numbers excluding -1 is such that sor all m, n \(\varepsilon\) R, m \(\Delta\) n = m + n + mn. Find the identity element of the operation.
A
1
B
o
C
-\(\frac{1}{2}\)
D
-1
correct option: b

m (\Delta) n = m + n + mn

m (\Delta) e = e (\Delta) m = m

m (\Delta) e = m

m + e + me = m

e + me = m - m

e + me = 0

e(1 + m) = 0

e = (\frac{0}{1 + m}) = 0

Users' Answers & Comments
66
Find the values of x and y respectively if
\(\begin{pmatrix} 1 & 0 \ -1 & -1\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \ -1 & 0\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \ -2 & -1\ -30 & 0 \end{pmatrix}\)
A
-3, -2
B
-5, -3
C
-2, -5
D
-3, -5
correct option: d

(\begin{pmatrix} 1 & 0 \ -1 & -1\ 2 & 2 \end{pmatrix}) + (\begin{pmatrix} x & 1 \ -1 & 0\ y & -2 \end{pmatrix}) = (\begin{pmatrix} -2 & 1 \ -2 & -1\ -30 & 0 \end{pmatrix})

therefore, (x, y) = (-3, -5) respectively

Users' Answers & Comments
67
\(\begin{pmatrix} -2 & 1 \ 2 & 3 \end{pmatrix}\) + \(\begin{pmatrix}p & q \ r & s\end{pmatrix}\) = \(\begin{pmatrix} 1 & 0 \0 & 1 \end{pmatrix}\). What is the value of r?
A
-\(\frac{1}{8}\)
B
\(\frac{3}{8}\)
C
\(\frac{5}{8}\)
D
\(\frac{1}{4}\)
correct option: d

-2p + r = 1.......(i)

2p + 3r = 0.......(ii)

r - 1 + 2p ........(iii)

2p + 3(1 + 2p) = 0

2p + 3(1 + 2p) = 0

2p + 3 + 6p = 0

3 - 8p = 0 (\to) 8p = 3

p = (\frac{3}{8})

6 = 1 - 2 (\frac{3}{8})

= 1 - (\frac{6}{8})

(\frac{8 - 6}{8}) = (\frac{2}{8})

= (\frac{1}{4})

Users' Answers & Comments
68
Find the angle subtended at the centre of a circle by a chord which is equal in length to the radius of the circle
A
30o
B
45o
C
60o
D
90o
correct option: c

Equilateral are equal in sides and angle

180o = 60o + 60o + 60o

(\theta) = 60o

Users' Answers & Comments
69
Find the capacity in litres of a cylindrical well of radius 1 meter and depth 14 metres.
A
44 000 litres
B
4400 litres
C
440 litres
D
44 litres
correct option: c

r = 1

h = 14

(\pi) = (\frac{22}{7})

A = (\pi)r2h

A = (\frac{22}{7}) x 12 x 14

A = 44m2

A = 44 x 10 litres

A = 440 litres

Users' Answers & Comments
70
The locus of a point equidistant from two points P(6,2) and R(4,2) is a perpendicular bisector of PR passing through
A
(2, 5)
B
(5, 2)
C
(1, 0)
D
(0,1)
correct option: b

let (6, 2) be represented as (x1, y1) and (4, 2) be (x2, y2)

p(6, 2) R(4, 2)

m.p = ((\frac{x_1 + x_2}{2})) ((\frac{y_1 + y_2}{2}))

= ((\frac{6 + 4}{2}) , (\frac{2 + 2}{2}))

= ((\frac{10}{2}),(\frac{4}{2}))

= (5, 2)

Users' Answers & Comments
Please share this, thanks: