2008 - JAMB Mathematics Past Questions and Answers - page 8
71
Find the gradient of a line which is perpendicular to the line with the equation 3x + 2y + 1 = 0
A
\(\frac{2}{3}\)
B
-\(\frac{2}{3}\)
C
-\(\frac{3}{2}\)
D
\(\frac{4}{3}\)
correct option: c
3x + 2y + 1 = 0
y = mx + c
2y = -3x - 1
y = -\(\frac{3}{2}\) x -\(\frac{1}{2}\)
m = -\(\frac{3}{2}\)
Users' Answers & Commentsy = mx + c
2y = -3x - 1
y = -\(\frac{3}{2}\) x -\(\frac{1}{2}\)
m = -\(\frac{3}{2}\)
72
Calculate the distance between points L(-1, -6) and M(-3, -5)
A
√5
B
2√3
C
√20
D
√50
correct option: a
L\(\begin{pmatrix} x_1 & y_1 \ -1 & -6 \end{pmatrix}\) m L\(\begin{pmatrix} x_2 & y_2 \ -3 & -5 \end{pmatrix}\)
D = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
D = \(\sqrt{(-3 - (-1)^2 + (-5 -(-6)^2}\)
D = \(\sqrt{(-3 + 1)^2 + (-5 + 6)^2}\)
D = \(\sqrt{(-2)^2 + 1^2}\)
D = \(\sqrt{4 + 1}\)
D = \(\sqrt{5}\)
Users' Answers & CommentsD = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
D = \(\sqrt{(-3 - (-1)^2 + (-5 -(-6)^2}\)
D = \(\sqrt{(-3 + 1)^2 + (-5 + 6)^2}\)
D = \(\sqrt{(-2)^2 + 1^2}\)
D = \(\sqrt{4 + 1}\)
D = \(\sqrt{5}\)
73
If sin \(\theta\) = \(\frac{3}{5}\), find tan \(\theta\)
A
\(\frac{3}{4}\)
B
\(\frac{3}{5}\)
C
\(\frac{2}{4}\)
D
\(\frac{1}{4}\)
correct option: a
sin \(\theta\) = \(\frac{3}{5}\), find tan \(\theta\)
sin \(\theta\) = \(\frac{opp}{hyp}\) = \(\frac{3}{5}\)
52 = x2 + 32
25 = x2 + 9
x2 = 16
x = \(\sqrt{16}\)
x = 4
tan = \(\frac{3}{4}\)
Users' Answers & Commentssin \(\theta\) = \(\frac{opp}{hyp}\) = \(\frac{3}{5}\)
52 = x2 + 32
25 = x2 + 9
x2 = 16
x = \(\sqrt{16}\)
x = 4
tan = \(\frac{3}{4}\)
74
A student sitting on a tower 68 metres high observes his principal's car at the angle of depression of 20o. How far is the car from the bottom of the tower to the nearest metre?
A
184m
B
185m
C
186m
D
187m
correct option: d
Tan 20o = \(\frac{68m}{x}\)
x tan 20o = 68
x = \(\frac{68}{tan 20}\) = \(\frac{68}{0.364}\)
x = 186.8
= 187m
Users' Answers & Commentsx tan 20o = 68
x = \(\frac{68}{tan 20}\) = \(\frac{68}{0.364}\)
x = 186.8
= 187m
75
Find the derivative of y = \(\frac{x^7 - x^5}{x^4}\)
A
(x2 - 1)
B
3x(x2 - 1)
C
3X2 - 1
D
7X6 - 5X4
correct option: c
y = \(\frac{x^7 - x^5}{x^4}\) = \(\frac{x^7 - x^5}{x^4}\)
Y = X3 - X
\(\frac{dy}{dx}\) = 3x3 - 1 - x1 - 1
= 3x2 - xo
\(\frac{dy}{dx}\) = 3x2 - 1
Users' Answers & CommentsY = X3 - X
\(\frac{dy}{dx}\) = 3x3 - 1 - x1 - 1
= 3x2 - xo
\(\frac{dy}{dx}\) = 3x2 - 1
76
Differentiate sin x - x cos x
A
x cos x
B
x sin x
C
-x cos x
D
-x sin x
correct option: b
y = sin x - x cos x
let; U = -x
\(\frac{dy}{dx}\) = -1
V = cos x
\(\frac{dx}{dx}\) = -5x
-x (-sin x) + cos x (-1)
x sin x - cos x
\(\frac{dy}{dx}\) = x sin x + cos x - cos x
\(\frac{dy}{dx}\) = x sin x
Users' Answers & Commentslet; U = -x
\(\frac{dy}{dx}\) = -1
V = cos x
\(\frac{dx}{dx}\) = -5x
-x (-sin x) + cos x (-1)
x sin x - cos x
\(\frac{dy}{dx}\) = x sin x + cos x - cos x
\(\frac{dy}{dx}\) = x sin x
77
Find the minimum value of the function y = x(1 + x)
A
-\(\frac{1}{4}\)
B
-\(\frac{1}{2}\)
C
\(\frac{1}{4}\)
D
\(\frac{1}{2}\)
correct option: b
y = x(1 + x)
y = x + x2
\(\frac{dy}{dx}\) = 1 + 2x
at minimum \(\frac{dy}{dx}\) = 0
therefore, 1 + 2x = 0 \(\to\) 2x = -1
x = -\(\frac{1}{2}\)
Users' Answers & Commentsy = x + x2
\(\frac{dy}{dx}\) = 1 + 2x
at minimum \(\frac{dy}{dx}\) = 0
therefore, 1 + 2x = 0 \(\to\) 2x = -1
x = -\(\frac{1}{2}\)
78
Evaluate \(\int ^{2}_{1}\)(6x2 - 2x)dx
A
16
B
13
C
12
D
11
correct option: d
\(\int ^{2}_{1}\)(6x2 - 2x)dx
= [\(\frac{6x^3}{3} - \frac{2x^2}{2}\)]2
= [2x3 - x2]2
= (2(2)3 - 4 - 2 + 1
= 16 - 4 - 2 + 1
= 17 - 6
= 11
Users' Answers & Comments= [\(\frac{6x^3}{3} - \frac{2x^2}{2}\)]2
= [2x3 - x2]2
= (2(2)3 - 4 - 2 + 1
= 16 - 4 - 2 + 1
= 17 - 6
= 11
79
\(\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\)cosx dx
A
7
B
1
C
2
D
3
correct option: b
\(\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\)cosx
\([sin x]^{\frac{\pi}{2}}_{\frac{\pi}{2}}\)
= sin\(\frac{\pi}{2}\)- (-sin \(\frac{\pi}{2}\))
= sin \(\frac{\pi}{2}\) + sin \(\frac{\pi}{2}\)
= 2 sin \(\frac{\pi}{2}\)
= 2 sin 1.5714
= 2(0.2704)
= 0.5
= 1
Users' Answers & Comments\([sin x]^{\frac{\pi}{2}}_{\frac{\pi}{2}}\)
= sin\(\frac{\pi}{2}\)- (-sin \(\frac{\pi}{2}\))
= sin \(\frac{\pi}{2}\) + sin \(\frac{\pi}{2}\)
= 2 sin \(\frac{\pi}{2}\)
= 2 sin 1.5714
= 2(0.2704)
= 0.5
= 1
80
On a pie chart, there are six sectors of which four angles are 30o, 45o, 60o, 90o and the remaining two angles are in the ratio 2 : 1. Find the smaller angles of the remaining two angles
A
15o
B
30o
C
45o
D
60o
correct option: c
Users' Answers & Comments