2008 - JAMB Mathematics Past Questions and Answers - page 8
3x + 2y + 1 = 0
y = mx + c
2y = -3x - 1
y = -(\frac{3}{2}) x -(\frac{1}{2})
m = -(\frac{3}{2})
Users' Answers & CommentsL(\begin{pmatrix} x_1 & y_1 \ -1 & -6 \end{pmatrix}) m L(\begin{pmatrix} x_2 & y_2 \ -3 & -5 \end{pmatrix})
D = (\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2})
D = (\sqrt{(-3 - (-1)^2 + (-5 -(-6)^2})
D = (\sqrt{(-3 + 1)^2 + (-5 + 6)^2})
D = (\sqrt{(-2)^2 + 1^2})
D = (\sqrt{4 + 1})
D = (\sqrt{5})
Users' Answers & Commentssin (\theta) = (\frac{3}{5}), find tan (\theta)
sin (\theta) = (\frac{opp}{hyp}) = (\frac{3}{5})
52 = x2 + 32
25 = x2 + 9
x2 = 16
x = (\sqrt{16})
x = 4
tan = (\frac{3}{4})
Users' Answers & CommentsTan 20o = (\frac{68m}{x})
x tan 20o = 68
x = (\frac{68}{tan 20}) = (\frac{68}{0.364})
x = 186.8
= 187m
Users' Answers & Commentsy = (\frac{x^7 - x^5}{x^4}) = (\frac{x^7 - x^5}{x^4})
Y = X3 - X
(\frac{dy}{dx}) = 3x3 - 1 - x1 - 1
= 3x2 - xo
(\frac{dy}{dx}) = 3x2 - 1
Users' Answers & Commentsy = sin x - x cos x
let; U = -x
(\frac{dy}{dx}) = -1
V = cos x
(\frac{dx}{dx}) = -5x
-x (-sin x) + cos x (-1)
x sin x - cos x
(\frac{dy}{dx}) = x sin x + cos x - cos x
(\frac{dy}{dx}) = x sin x
Users' Answers & Commentsy = x(1 + x)
y = x + x2
(\frac{dy}{dx}) = 1 + 2x
at minimum (\frac{dy}{dx}) = 0
therefore, 1 + 2x = 0 (\to) 2x = -1
x = -(\frac{1}{2})
Users' Answers & Comments(\int ^{2}_{1})(6x2 - 2x)dx
= [(\frac{6x^3}{3} - \frac{2x^2}{2})]2
= [2x3 - x2]2
= (2(2)3 - 4 - 2 + 1
= 16 - 4 - 2 + 1
= 17 - 6
= 11
Users' Answers & Comments(\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}})cosx
([sin x]^{\frac{\pi}{2}}_{\frac{\pi}{2}})
= sin(\frac{\pi}{2})- (-sin (\frac{\pi}{2}))
= sin (\frac{\pi}{2}) + sin (\frac{\pi}{2})
= 2 sin (\frac{\pi}{2})
= 2 sin 1.5714
= 2(0.2704)
= 0.5
= 1
Users' Answers & Comments