2008 - JAMB Mathematics Past Questions and Answers - page 8

71
Find the gradient of a line which is perpendicular to the line with the equation 3x + 2y + 1 = 0
A
\(\frac{2}{3}\)
B
-\(\frac{2}{3}\)
C
-\(\frac{3}{2}\)
D
\(\frac{4}{3}\)
correct option: c

3x + 2y + 1 = 0

y = mx + c

2y = -3x - 1

y = -(\frac{3}{2}) x -(\frac{1}{2})

m = -(\frac{3}{2})

Users' Answers & Comments
72
Calculate the distance between points L(-1, -6) and M(-3, -5)
A
√5
B
2√3
C
√20
D
√50
correct option: a

L(\begin{pmatrix} x_1 & y_1 \ -1 & -6 \end{pmatrix}) m L(\begin{pmatrix} x_2 & y_2 \ -3 & -5 \end{pmatrix})

D = (\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2})

D = (\sqrt{(-3 - (-1)^2 + (-5 -(-6)^2})

D = (\sqrt{(-3 + 1)^2 + (-5 + 6)^2})

D = (\sqrt{(-2)^2 + 1^2})

D = (\sqrt{4 + 1})

D = (\sqrt{5})

Users' Answers & Comments
73
If sin \(\theta\) = \(\frac{3}{5}\), find tan \(\theta\)
A
\(\frac{3}{4}\)
B
\(\frac{3}{5}\)
C
\(\frac{2}{4}\)
D
\(\frac{1}{4}\)
correct option: a

sin (\theta) = (\frac{3}{5}), find tan (\theta)

sin (\theta) = (\frac{opp}{hyp}) = (\frac{3}{5})

52 = x2 + 32

25 = x2 + 9

x2 = 16

x = (\sqrt{16})

x = 4

tan = (\frac{3}{4})

Users' Answers & Comments
74
A student sitting on a tower 68 metres high observes his principal's car at the angle of depression of 20o. How far is the car from the bottom of the tower to the nearest metre?
A
184m
B
185m
C
186m
D
187m
correct option: d

Tan 20o = (\frac{68m}{x})

x tan 20o = 68

x = (\frac{68}{tan 20}) = (\frac{68}{0.364})

x = 186.8

= 187m

Users' Answers & Comments
75
Find the derivative of y = \(\frac{x^7 - x^5}{x^4}\)
A
(x2 - 1)
B
3x(x2 - 1)
C
3X2 - 1
D
7X6 - 5X4
correct option: c

y = (\frac{x^7 - x^5}{x^4}) = (\frac{x^7 - x^5}{x^4})

Y = X3 - X

(\frac{dy}{dx}) = 3x3 - 1 - x1 - 1

= 3x2 - xo


(\frac{dy}{dx}) = 3x2 - 1

Users' Answers & Comments
76
Differentiate sin x - x cos x
A
x cos x
B
x sin x
C
-x cos x
D
-x sin x
correct option: b

y = sin x - x cos x

let; U = -x

(\frac{dy}{dx}) = -1

V = cos x

(\frac{dx}{dx}) = -5x

-x (-sin x) + cos x (-1)

x sin x - cos x

(\frac{dy}{dx}) = x sin x + cos x - cos x

(\frac{dy}{dx}) = x sin x

Users' Answers & Comments
77
Find the minimum value of the function y = x(1 + x)
A
-\(\frac{1}{4}\)
B
-\(\frac{1}{2}\)
C
\(\frac{1}{4}\)
D
\(\frac{1}{2}\)
correct option: b

y = x(1 + x)

y = x + x2

(\frac{dy}{dx}) = 1 + 2x

at minimum (\frac{dy}{dx}) = 0

therefore, 1 + 2x = 0 (\to) 2x = -1

x = -(\frac{1}{2})

Users' Answers & Comments
78
Evaluate \(\int ^{2}_{1}\)(6x2 - 2x)dx
A
16
B
13
C
12
D
11
correct option: d

(\int ^{2}_{1})(6x2 - 2x)dx

= [(\frac{6x^3}{3} - \frac{2x^2}{2})]2

= [2x3 - x2]2

= (2(2)3 - 4 - 2 + 1

= 16 - 4 - 2 + 1

= 17 - 6

= 11

Users' Answers & Comments
79
\(\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\)cosx dx
A
7
B
1
C
2
D
3
correct option: b

(\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}})cosx

([sin x]^{\frac{\pi}{2}}_{\frac{\pi}{2}})

= sin(\frac{\pi}{2})- (-sin (\frac{\pi}{2}))

= sin (\frac{\pi}{2}) + sin (\frac{\pi}{2})

= 2 sin (\frac{\pi}{2})

= 2 sin 1.5714

= 2(0.2704)

= 0.5

= 1

Users' Answers & Comments
80
On a pie chart, there are six sectors of which four angles are 30o, 45o, 60o, 90o and the remaining two angles are in the ratio 2 : 1. Find the smaller angles of the remaining two angles
A
15o
B
30o
C
45o
D
60o
correct option: c
Users' Answers & Comments
Please share this, thanks: