1

Simplify 125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)

A

350

B

35

C

1/35

D

1/350

CORRECT OPTION:
c

125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)

= 5\(^{-1}\) x 7\(^{-1}\) x 1

= \(\frac{1}{35}\)

2

If 3\(^{2x}\) = 27, what is x?

A

1

B

1.5

C

4.5

D

18

CORRECT OPTION:
b

3\(^{2x}\) = 27

3\(^{2x}\) = 3\(^3\)

2x = 3

x = 1.5

3

Express 0.00562 in standard form

A

5.62 x 10^{-3}

B

5.62 x 10^{-2}

C

562 x 10^{-2}

D

5.62 x 10^{2}

CORRECT OPTION:
a

0.00562 = 5.62 x 10\(^{-3}\)

4

Given that 1/3log_{10} P = 1, find the value of P

A

1/10

B

3

C

10

D

100

CORRECT OPTION:
e

log

P

5

Simplify \(\frac{\log \sqrt{8}}{\log 8}\)

A

1/3

B

1/2

C

D

CORRECT OPTION:
b

\(\frac{\log \sqrt{8}}{\log 8}\)

= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\)

= \(\frac{\frac{1}{2} \log 8}{\log 8}\)

= \(\frac{1}{2}\)

6

Evaluate using the logarithm table, log(0.65)^{2}

A

1.6258

B

0.6272

C

0.6258

D

3.6258

CORRECT OPTION:
d

log(0.65)^{2} = 2log(0.65) but log0.65 = 1.8129

∴2 x 1.8129 = 3.6258

∴2 x 1.8129 = 3.6258

7

If log x = \(\bar{2}.3675\) and log y = 0.9750, what is the value of x + y? Correct to three significant figures

A

1.18

B

1.31

C

9.03

D

9.44

CORRECT OPTION:
e

log x = \(\bar{2}.3675\) ; log y = 0.9750

\(x = 10^{\bar{2}.3675} = 0.02331 \)

\(y = 10^{0.9750} = 9.441 \)

\(x + y = 9.4641 \approxeq 9.46\)

8

While doing his physics practical, Idowu recorded a reading as 1.12cm instead of 1.21cm. Calculate his percentage error

A

1.17%

B

6.38%

C

7.44%

D

8.035%

CORRECT OPTION:
c

%error = \(\frac{1.21 - 1.12}{1.21} \times 100%\)

= \(\frac{9}{121} \times 100%\)

= 7.44%

9

Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5

A

0.5

B

2.5

C

3.5

D

4

CORRECT OPTION:
c

\(U_{n} = a + (n - 1)d\)

\(U_{4} = 2 + (4 - 1) \times 0.5\)

= \(2 + 1.5\)

= 3.5

10

From the graph determine the roots of the equation y = 2x^{2} + x - 6

A

-3, 4

B

-2, -6

C

-2, 1.5

D

-1, 1

CORRECT OPTION:
c

Pages: