1993 - JAMB Mathematics Past Questions and Answers - page 4
102 = 2x2 - 2x2 cos 120o (Cosine rule)
100 = 242 - 2x2 - 2x2 x -(\frac{1}{2})
100 = 3x2 + x2
= 3x2
x = (\sqrt{\frac{100}{3}})
= (\frac{10}{\sqrt{3}}) x (\frac{3}{\sqrt{3}})
x = 10(\frac{3}{3})cm
Users' Answers & CommentsAngle corresponding to 7 in a pie chart will be (\frac{7 \times 360}{\text{sum of items}})
= (\frac{7 }{18}) x 360
= 140o
Users' Answers & CommentsNumber of students scoring at least 50 marks = Number of students scoring 50 and above
From the table 53, 70, 84, 59, 90, 60, 81, 73, 50, 37, 67, 68, 64, 52. Hence, 14 students scored at least 50 marks
Users' Answers & CommentsEstimate the mode of the frequency distribution above
Mode = a + (\frac{(b - a)(F_m - F_b)}{2F_m - F_a - F_b})
= (L_1 + \frac{\Delta_1 x^\text{c}}{\Delta_1 + \Delta_2})
= (10 + \frac{(20 - 10)(27 - 10)}{2(27) - 10 - 19})
= 10 + (\frac{170}{25})
= 10 + 6.8
= 16.8
Users' Answers & CommentsAverage age of 110 students = 16
∴ Total age = 16 x 10 = 160 years
Age of teachers = x, total number of people now = 11
mean age = 19
Total age of new group = 19 x 11 = 209
Age of teachers = x = (209 - 160) = 49 yrs
Users' Answers & CommentsFind the median of the observation in the table given
Median = L1 + ((\frac{Ef}{fm})) - fo
(\frac{\sum f}{2})
= (\frac{20}{2})
= 10, L1 = 10.5, fo = 6, fm = 5
Median = 10.5 + (\frac{(10 - 6)}{5})5
= 10.5 + 4
= 14.5
Users' Answers & CommentsPossible outcomes are 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30. Prime numbers has only two factors
itself and 1
The prime numbers among the group are 23, 29. Probability of choosing a prime number
= (\frac{\text{Number of prime}}{\text{No. of total Possible Outcomes}})
= (\frac{2}{11})
Users' Answers & Comments(
S.D = (\sqrt{\frac{\sum(x - x)^2}{N}})
= (\sqrt{\frac{\sum d^2}{N}})
= (\sqrt{\frac{28}{7}})
= (\sqrt{4})
= 2
Users' Answers & CommentsChance of x = (\frac{1}{2})
Change of Y = (\frac{2}{3})
Chance of Z = (\frac{1}{4})
Chance of Y and Z only occurring
= Pr (Y ∩ Z ∩ Xc)
where Xc = 1 - Pr(X)
1 = (\frac{1}{2}) = 1(\frac{1}{2})
= Pr(Y) x Pr(Z) x Pr(Xc)
= (\frac{2}{3}) x (\frac{1}{4}) x (\frac{1}{2})
= (\frac{1}{12})
Users' Answers & Comments