2013 - JAMB Mathematics Past Questions and Answers - page 1

1
Convert 2710 to another number in base three
A
10013
B
10103
C
11003
D
10003
correct option: d

(\begin{array}{c|c}

3 & \text{27 rem 0} \

\hline

3 & \text{ 9 rem 0} \

\hline

3 & \text{ 3 rem 0} \

\hline

3 & \text{ 1 rem 1}\

\hline

& 0

\end{array})

Hence the correct answer is 10003

Users' Answers & Comments
2
3 girls share a number of apples in the ration 5:3:2. If the highest share is 40 apples, find the smallest share
A
36
B
24
C
16
D
38
correct option: c

The sum, S of ratio is S = 5 + 3 + 2 = 10.

But highest share = (\frac{5}{10} \times T), where T is the total number of apples.

Thus, (40 = \frac{5}{10} \times T),

given 40 x 10 = 5T,

(T = \frac{40 \times 10}{5} = 80)

Hence the smallest share = (\frac{2}{10} \times 80)

= 16 apples

Users' Answers & Comments
3
Evaluate \(\frac{1.25 \times 0.025}{0.05}\), correct to 1 decimal place
A
0.6
B
6.2
C
6.3
D
0.5
correct option: a

(\frac{1.25 \times 0.025}{0.05})

( = \frac{125 \times 10^{-2} \times 25 \times 10^{-3}}{5 \times 10^{-2}})

= 125 x 5 x 10-3

= 625 x 0.001

= 0.625

= 0.6 Approx to 1 d.p.

Users' Answers & Comments
4
Calculate the time taken for N3000 to earn N600 if invested at 8% simple interest
A
2\(\frac{1}{2}\) years
B
3 years
C
3\(\frac{1}{2}\) years
D
1\(\frac{1}{2}\) years
correct option: a

Using (S.I =\frac{P \times T \times R}{100})

(600 =\frac{3000 \times T \times 8}{100})

(T =\frac{600 \times 100}{3000 \times 8})

(\frac{20}{8})

= 2(\frac{1}{2}) years

Users' Answers & Comments
5
Simplify \(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1}\)
A
32
B
33
C
35
D
3
correct option: d

(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1})

(\frac{3^{-5n}}{3^{2(1-n)}} \times 3^{3(n + 1)})

(3^{-5n} \div 3^{2(1-n)} \times 3^{3(n + 1)})


(3^{-5n - 2(1-n) + 3(n + 1)})


(3^{-5n - 2 + 2n + 3n + 3})

(3^{-5n + 5n + 3 - 2})

(3^{1})

= 3

Users' Answers & Comments
6
If log104 = 0.6021, evaluate log1041/3
A
0.3011
B
0.9021
C
1.8063
D
0.2007
correct option: d

log1041/3 = 1/3 log104

= 1/3 x 0.6021

= 0.2007

Users' Answers & Comments
7
Simplify \(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)
A
5
B
\(\frac{1}{5}\)
C
\(\frac{1}{9}\)
D
9
correct option: a

(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}})

(\frac{\sqrt{5}(\sqrt{49 \times 3} - \sqrt{4 \times 3}}{\sqrt{5 \times 3}})

(\frac{\sqrt{5}(7\sqrt{3} - 2\sqrt{3}}{\sqrt{5} \times \sqrt{3}})

(\frac{\sqrt{3} (7 - 2}{\sqrt{3}})

= 5

Users' Answers & Comments
8
if P = {x:x is odd, \(-1 < x \leq 20\)} and Q is {y:y is prime, \(-2 < y \leq 25\), find P \(\cap\) Q
A
{3,5,7,11,17,19}
B
{3,5,11,13,17,19}
C
{3,5,7,11,13,17,19}
D
{2,3,5,7,11,13,17,19}
correct option: c
Users' Answers & Comments
9
If S = \(\sqrt{t^2 - 4t + 4}\), find t in terms of S
A
S2 - 2
B
S + 2
C
S - 2
D
S2 + 2
correct option: b

S = (\sqrt{t^2 - 4t + 4})

S2 = t2 - 4t + 4

t2 - 4t + 4 - S2 = 0

Using (t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})

Substituting, we have;

Using (t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)})

(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2})

(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2})

(t = \frac{4 \pm \sqrt{4S^2}}{2})

(t = \frac{2(2 \pm S)}{2})

Hence t = 2 + S or t = 2 - S

Users' Answers & Comments
10
If x - 4 is a factor of x2 - x - k, then k is
A
4
B
12
C
20
D
2
correct option: b

Let f(x) = x2 - x - k

Then by the factor theorem,

(x - 4): f(4) = (4)2 - (4) - k = 0

16 - 4 - k = 0

12 - k = 0

k = 12

Users' Answers & Comments
Please share this, thanks: