2013 - JAMB Mathematics Past Questions and Answers - page 1
(\begin{array}{c|c}
3 & \text{27 rem 0} \
\hline
3 & \text{ 9 rem 0} \
\hline
3 & \text{ 3 rem 0} \
\hline
3 & \text{ 1 rem 1}\
\hline
& 0
\end{array})
Hence the correct answer is 10003
Users' Answers & CommentsThe sum, S of ratio is S = 5 + 3 + 2 = 10.
But highest share = (\frac{5}{10} \times T), where T is the total number of apples.
Thus, (40 = \frac{5}{10} \times T),
given 40 x 10 = 5T,
(T = \frac{40 \times 10}{5} = 80)
Hence the smallest share = (\frac{2}{10} \times 80)
= 16 apples
Users' Answers & Comments(\frac{1.25 \times 0.025}{0.05})
( = \frac{125 \times 10^{-2} \times 25 \times 10^{-3}}{5 \times 10^{-2}})
= 125 x 5 x 10-3
= 625 x 0.001
= 0.625
= 0.6 Approx to 1 d.p.
Users' Answers & CommentsUsing (S.I =\frac{P \times T \times R}{100})
(600 =\frac{3000 \times T \times 8}{100})
(T =\frac{600 \times 100}{3000 \times 8})
(\frac{20}{8})
= 2(\frac{1}{2}) years
Users' Answers & Comments(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1})
(\frac{3^{-5n}}{3^{2(1-n)}} \times 3^{3(n + 1)})
(3^{-5n} \div 3^{2(1-n)} \times 3^{3(n + 1)})
(3^{-5n - 2(1-n) + 3(n + 1)})
(3^{-5n - 2 + 2n + 3n + 3})
(3^{-5n + 5n + 3 - 2})
(3^{1})
= 3
Users' Answers & Comments(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}})
(\frac{\sqrt{5}(\sqrt{49 \times 3} - \sqrt{4 \times 3}}{\sqrt{5 \times 3}})
(\frac{\sqrt{5}(7\sqrt{3} - 2\sqrt{3}}{\sqrt{5} \times \sqrt{3}})
(\frac{\sqrt{3} (7 - 2}{\sqrt{3}})
= 5
Users' Answers & CommentsS = (\sqrt{t^2 - 4t + 4})
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using (t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})
Substituting, we have;
Using (t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)})
(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2})
(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2})
(t = \frac{4 \pm \sqrt{4S^2}}{2})
(t = \frac{2(2 \pm S)}{2})
Hence t = 2 + S or t = 2 - S
Users' Answers & CommentsLet f(x) = x2 - x - k
Then by the factor theorem,
(x - 4): f(4) = (4)2 - (4) - k = 0
16 - 4 - k = 0
12 - k = 0
k = 12
Users' Answers & Comments