2013 - JAMB Mathematics Past Questions and Answers - page 2
Let f(p) = 6p3 - p2 - 47p + 30
Then by the remainder theorem,
(p - 3): f(3) = remainder R,
i.e. f(3) = 6(3)3 - (3)2 - 47(3) + 30 = R
162 - 9 - 141 + 30 = R
192 - 150 = R
R = 42
Users' Answers & CommentsP (\propto) mu, p (\propto \frac{1}{q})
p = muk ................ (1)
p = (\frac{1}{q}k).... (2)
Combining (1) and (2), we get
P = (\frac{mu}{q}k)
4 = (\frac{m \times u}{1}k)
giving k = (\frac{4}{6} = \frac{2}{3})
So, P = (\frac{mu}{q} \times \frac{2}{3} = \frac{2mu}{3q})
Hence, P = (\frac{2 \times 6 \times 4}{3 \times \frac{8}{5}})
P = (\frac{2 \times 6 \times 4 \times 5}{3 \times 8})
p = 10
Users' Answers & Comments(r \propto \frac{1}{\sqrt{s}}, r \propto \frac{1}{\sqrt{t}})
(r \propto \frac{1}{\sqrt{s}}) ..... (1)
(r \propto \frac{1}{\sqrt{t}}) ..... (2)
Combining (1) and (2), we get
(r = \frac{k}{\sqrt{s} \times \sqrt{t}} = \frac{k}{\sqrt{st}})
This gives (\sqrt{st} = \frac{k}{r})
By taking the square of both sides, we get
st = (\frac{k^2}{r^2})
s = (\frac{k^2}{r^{2}t})
Users' Answers & Comments3(x + 2) > 6(x + 3)
3x + 6 > 6x + 18
3x - 6x > 18 - 6
-3x > 12
x < -4
Users' Answers & Comments|x - 2| < 3 implies
-(x - 2) < 3 .... or .... +(x - 2) < 3
-x + 2 < 3 .... or .... x - 2 < 3
-x < 3 - 2 .... or .... x < 3 + 2
x > 1 .... or .... x < 1
combining the two inequalities results, we get;
-1 < x < 5
Users' Answers & CommentsUsing Sn = (a\frac{r^2 - 1}{r - 1})
we get S2 = 3 = (a\frac{r^2 - 1}{r - 1})
giving 3(r - 1) = a(r2 - 1)
3r - 3 = ar2 - a
ar2 - 3r - a = -3 ..... (1)
ar + ar2 = -6 ..... (2)
From (2), a = (\frac{-6}{(r + r^2)})
Substitute (\frac{-6}{(r + r^2)}) for a in (1)
((\frac{-6}{(r + r^2)})r^2 - 3r - \frac{-6}{(r + r^2)} = -3)
Multiply through by (r + r2) to get
-6r2 - 3r(r + r2) + 6 = -3(r + r2)
-6r2 - 3r2 - 3r3 + 6 = -3r - 3r2
Equating to zero, we have
3r3 - 3r2 + 3r2 + 6r2 - 3r - 6 = 0
This reduces to;
3r3 + 6r2 - 3r - 6 = 0
3(r3 + 2r2 - r - 2) = 0
By the factor theorem,
(r + 2): f(-2) = (-2)3 + 2(-2)2 - (-2) - 2
-8 + 8 + 2 - 2 = 0
giving r = -2 as the only valid value of r for the G.P.
From (3), = (\frac{-6}{-2 + (-2)^2} = \frac{-6}{-2 + 4})
a = -6/2 = -3
Hence (a + r) = (-3 + -2) = -5
Users' Answers & CommentsUsing Tn = (\frac{3n + 1}{n + 1}),
T1 = (\frac{3(1) + 1}{(1) + 1} = \frac{4}{2})
T2 = (\frac{3(2) + 1}{(2) + 1} = \frac{7}{3})
T3 = (\frac{3(3) + 1}{(3) + 1} = \frac{10}{4})
Users' Answers & Commentsx * y = x + 2y (given)
3 * 4 = 3 + 2(4) = 11
Hence, 2 * (3 * 4) = 2 * 11
= 2 + 2(11)
= 2 + 22
= 24
Users' Answers & Comments2P + Q = 2(\begin{pmatrix} 5 & 3 \ 2 & 1 \end{pmatrix}) + (\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix})
= (\begin{pmatrix} 10 & 6 \ 4 & 2 \end{pmatrix}) + (\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix})
= (\begin{pmatrix} 14 & 8 \ 7 & 7 \end{pmatrix})
Users' Answers & CommentsLet A = (\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix})
Then |A| = (\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix}) = 20 - 18 = 2
Hence A-1 = (\frac{1}{|A|}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix})
= (\frac{1}{2}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix})
= (\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix})
= (\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix})
Users' Answers & Comments