2013 - JAMB Mathematics Past Questions and Answers - page 2

11
The remainder when 6p3 - p2 - 47p + 30 is divided by p - 3 is
A
21
B
42
C
63
D
18
correct option: b

Let f(p) = 6p3 - p2 - 47p + 30

Then by the remainder theorem,

(p - 3): f(3) = remainder R,

i.e. f(3) = 6(3)3 - (3)2 - 47(3) + 30 = R

162 - 9 - 141 + 30 = R

192 - 150 = R

R = 42

Users' Answers & Comments
12
P varies jointly as m and u, and varies inversely as q. Given that p = 4, m = 3 and u = 2 and q = 1, find the value of p when m = 6, u = 4 and q =\(\frac{8}{5}\)
A
12\(\frac{8}{5}\)
B
15
C
10
D
28\(\frac{8}{5}\)
correct option: c

P (\propto) mu, p (\propto \frac{1}{q})

p = muk ................ (1)

p = (\frac{1}{q}k).... (2)

Combining (1) and (2), we get

P = (\frac{mu}{q}k)

4 = (\frac{m \times u}{1}k)

giving k = (\frac{4}{6} = \frac{2}{3})

So, P = (\frac{mu}{q} \times \frac{2}{3} = \frac{2mu}{3q})

Hence, P = (\frac{2 \times 6 \times 4}{3 \times \frac{8}{5}})

P = (\frac{2 \times 6 \times 4 \times 5}{3 \times 8})

p = 10

Users' Answers & Comments
13
If r varies inversely as the square root of s and t, how does s vary with r and t?
A
s varies inversely as r and t2
B
s varies inverely as r2 and t
C
s varies directly as r2 and t2
D
s varies directly as r and t
correct option: b

(r \propto \frac{1}{\sqrt{s}}, r \propto \frac{1}{\sqrt{t}})

(r \propto \frac{1}{\sqrt{s}}) ..... (1)

(r \propto \frac{1}{\sqrt{t}}) ..... (2)

Combining (1) and (2), we get

(r = \frac{k}{\sqrt{s} \times \sqrt{t}} = \frac{k}{\sqrt{st}})

This gives (\sqrt{st} = \frac{k}{r})

By taking the square of both sides, we get

st = (\frac{k^2}{r^2})

s = (\frac{k^2}{r^{2}t})

Users' Answers & Comments
14
Evaluate 3(x + 2) > 6(x + 3)
A
x < 4
B
x > -4
C
x < -4
D
x > 4
correct option: c

3(x + 2) > 6(x + 3)

3x + 6 > 6x + 18

3x - 6x > 18 - 6

-3x > 12

x < -4

Users' Answers & Comments
15
Solve for x: |x - 2| < 3
A
x < 5
B
-2 < x < 3
C
-1 < x < 5
D
x < 1
correct option: c

|x - 2| < 3 implies

-(x - 2) < 3 .... or .... +(x - 2) < 3

-x + 2 < 3 .... or .... x - 2 < 3

-x < 3 - 2 .... or .... x < 3 + 2

x > 1 .... or .... x < 1

combining the two inequalities results, we get;

-1 < x < 5

Users' Answers & Comments
16
If the sum of the first two terms of a G.P. is 3, and the sum of the second and the third terms is -6, find the sum of the first term and the common ratio
A
-2
B
-3
C
-5
D
5
correct option: c

Using Sn = (a\frac{r^2 - 1}{r - 1})

we get S2 = 3 = (a\frac{r^2 - 1}{r - 1})

giving 3(r - 1) = a(r2 - 1)

3r - 3 = ar2 - a

ar2 - 3r - a = -3 ..... (1)

ar + ar2 = -6 ..... (2)

From (2), a = (\frac{-6}{(r + r^2)})

Substitute (\frac{-6}{(r + r^2)}) for a in (1)

((\frac{-6}{(r + r^2)})r^2 - 3r - \frac{-6}{(r + r^2)} = -3)

Multiply through by (r + r2) to get

-6r2 - 3r(r + r2) + 6 = -3(r + r2)

-6r2 - 3r2 - 3r3 + 6 = -3r - 3r2

Equating to zero, we have

3r3 - 3r2 + 3r2 + 6r2 - 3r - 6 = 0

This reduces to;

3r3 + 6r2 - 3r - 6 = 0

3(r3 + 2r2 - r - 2) = 0

By the factor theorem,

(r + 2): f(-2) = (-2)3 + 2(-2)2 - (-2) - 2

-8 + 8 + 2 - 2 = 0

giving r = -2 as the only valid value of r for the G.P.

From (3), = (\frac{-6}{-2 + (-2)^2} = \frac{-6}{-2 + 4})

a = -6/2 = -3

Hence (a + r) = (-3 + -2) = -5

Users' Answers & Comments
17
The nth term of the progression \(\frac{4}{2}\), \(\frac{7}{3}\), \(\frac{10}{4}\), \(\frac{13}{5}\) is ...
A
\(\frac{1 - 3n}{n + 1}\)
B
\(\frac{3n + 1}{n + 1}\)
C
\(\frac{3n + 1}{n - 1}\)
D
\(\frac{3n - 1}{n + 1}\)
correct option: b

Using Tn = (\frac{3n + 1}{n + 1}),

T1 = (\frac{3(1) + 1}{(1) + 1} = \frac{4}{2})

T2 = (\frac{3(2) + 1}{(2) + 1} = \frac{7}{3})

T3 = (\frac{3(3) + 1}{(3) + 1} = \frac{10}{4})

Users' Answers & Comments
18
If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)
A
24
B
16
C
14
D
26
correct option: a

x * y = x + 2y (given)

3 * 4 = 3 + 2(4) = 11

Hence, 2 * (3 * 4) = 2 * 11

= 2 + 2(11)

= 2 + 22

= 24

Users' Answers & Comments
19
If P = \(\begin{vmatrix} 5 & 3 \ 2 & 1 \end{vmatrix}\) and Q = \(\begin{vmatrix} 4 & 2 \ 3 & 5 \end{vmatrix}\), find 2P + Q
A
\(\begin{vmatrix} 7 & 7 \ 14 & 8 \end{vmatrix}\)
B
\(\begin{vmatrix} 14 & 8 \ 7 & 7 \end{vmatrix}\)
C
\(\begin{vmatrix} 7 & 7 \ 8 & 14 \end{vmatrix}\)
D
\(\begin{vmatrix} 8 & 14 \ 7 & 7 \end{vmatrix}\)
correct option: b

2P + Q = 2(\begin{pmatrix} 5 & 3 \ 2 & 1 \end{pmatrix}) + (\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix})

= (\begin{pmatrix} 10 & 6 \ 4 & 2 \end{pmatrix}) + (\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix})

= (\begin{pmatrix} 14 & 8 \ 7 & 7 \end{pmatrix})

Users' Answers & Comments
20
Find the inverse \(\begin{vmatrix} 5 & 3 \ 6 & 4 \end{vmatrix}\)
A
\(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & -\frac{5}{2} \end{vmatrix}\)
B
\(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
C
\(\begin{vmatrix} 2 & \frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
D
\(\begin{vmatrix} 2 & \frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
correct option: b

Let A = (\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix})

Then |A| = (\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix}) = 20 - 18 = 2

Hence A-1 = (\frac{1}{|A|}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix})

= (\frac{1}{2}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix})

= (\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix})

= (\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix})

Users' Answers & Comments
Please share this, thanks: