2013 - JAMB Mathematics Past Questions and Answers - page 2
11
The remainder when 6p3 - p2 - 47p + 30 is divided by p - 3 is
A
21
B
42
C
63
D
18
correct option: b
Let f(p) = 6p3 - p2 - 47p + 30
Then by the remainder theorem,
(p - 3): f(3) = remainder R,
i.e. f(3) = 6(3)3 - (3)2 - 47(3) + 30 = R
162 - 9 - 141 + 30 = R
192 - 150 = R
R = 42
Users' Answers & CommentsThen by the remainder theorem,
(p - 3): f(3) = remainder R,
i.e. f(3) = 6(3)3 - (3)2 - 47(3) + 30 = R
162 - 9 - 141 + 30 = R
192 - 150 = R
R = 42
12
P varies jointly as m and u, and varies inversely as q. Given that p = 4, m = 3 and u = 2 and q = 1, find the value of p when m = 6, u = 4 and q =\(\frac{8}{5}\)
A
12\(\frac{8}{5}\)
B
15
C
10
D
28\(\frac{8}{5}\)
correct option: c
P \(\propto\) mu, p \(\propto \frac{1}{q}\)
p = muk ................ (1)
p = \(\frac{1}{q}k\).... (2)
Combining (1) and (2), we get
P = \(\frac{mu}{q}k\)
4 = \(\frac{m \times u}{1}k\)
giving k = \(\frac{4}{6} = \frac{2}{3}\)
So, P = \(\frac{mu}{q} \times \frac{2}{3} = \frac{2mu}{3q}\)
Hence, P = \(\frac{2 \times 6 \times 4}{3 \times \frac{8}{5}}\)
P = \(\frac{2 \times 6 \times 4 \times 5}{3 \times 8}\)
p = 10
Users' Answers & Commentsp = muk ................ (1)
p = \(\frac{1}{q}k\).... (2)
Combining (1) and (2), we get
P = \(\frac{mu}{q}k\)
4 = \(\frac{m \times u}{1}k\)
giving k = \(\frac{4}{6} = \frac{2}{3}\)
So, P = \(\frac{mu}{q} \times \frac{2}{3} = \frac{2mu}{3q}\)
Hence, P = \(\frac{2 \times 6 \times 4}{3 \times \frac{8}{5}}\)
P = \(\frac{2 \times 6 \times 4 \times 5}{3 \times 8}\)
p = 10
13
If r varies inversely as the square root of s and t, how does s vary with r and t?
A
s varies inversely as r and t2
B
s varies inverely as r2 and t
C
s varies directly as r2 and t2
D
s varies directly as r and t
correct option: b
\(r \propto \frac{1}{\sqrt{s}}, r \propto \frac{1}{\sqrt{t}}\)
\(r \propto \frac{1}{\sqrt{s}}\) ..... (1)
\(r \propto \frac{1}{\sqrt{t}}\) ..... (2)
Combining (1) and (2), we get
\(r = \frac{k}{\sqrt{s} \times \sqrt{t}} = \frac{k}{\sqrt{st}}\)
This gives \(\sqrt{st} = \frac{k}{r}\)
By taking the square of both sides, we get
st = \(\frac{k^2}{r^2}\)
s = \(\frac{k^2}{r^{2}t}\)
Users' Answers & Comments\(r \propto \frac{1}{\sqrt{s}}\) ..... (1)
\(r \propto \frac{1}{\sqrt{t}}\) ..... (2)
Combining (1) and (2), we get
\(r = \frac{k}{\sqrt{s} \times \sqrt{t}} = \frac{k}{\sqrt{st}}\)
This gives \(\sqrt{st} = \frac{k}{r}\)
By taking the square of both sides, we get
st = \(\frac{k^2}{r^2}\)
s = \(\frac{k^2}{r^{2}t}\)
14
Evaluate 3(x + 2) > 6(x + 3)
A
x < 4
B
x > -4
C
x < -4
D
x > 4
correct option: c
3(x + 2) > 6(x + 3)
3x + 6 > 6x + 18
3x - 6x > 18 - 6
-3x > 12
x < -4
Users' Answers & Comments3x + 6 > 6x + 18
3x - 6x > 18 - 6
-3x > 12
x < -4
15
Solve for x: |x - 2| < 3
A
x < 5
B
-2 < x < 3
C
-1 < x < 5
D
x < 1
correct option: c
|x - 2| < 3 implies
-(x - 2) < 3 .... or .... +(x - 2) < 3
-x + 2 < 3 .... or .... x - 2 < 3
-x < 3 - 2 .... or .... x < 3 + 2
x > 1 .... or .... x < 1
combining the two inequalities results, we get;
-1 < x < 5
Users' Answers & Comments-(x - 2) < 3 .... or .... +(x - 2) < 3
-x + 2 < 3 .... or .... x - 2 < 3
-x < 3 - 2 .... or .... x < 3 + 2
x > 1 .... or .... x < 1
combining the two inequalities results, we get;
-1 < x < 5
16
If the sum of the first two terms of a G.P. is 3, and the sum of the second and the third terms is -6, find the sum of the first term and the common ratio
A
-2
B
-3
C
-5
D
5
correct option: c
Using Sn = \(a\frac{r^2 - 1}{r - 1}\)
we get S2 = 3 = \(a\frac{r^2 - 1}{r - 1}\)
giving 3(r - 1) = a(r2 - 1)
3r - 3 = ar2 - a
ar2 - 3r - a = -3 ..... (1)
ar + ar2 = -6 ..... (2)
From (2), a = \(\frac{-6}{(r + r^2)}\)
Substitute \(\frac{-6}{(r + r^2)}\) for a in (1)
\((\frac{-6}{(r + r^2)})r^2 - 3r - \frac{-6}{(r + r^2)} = -3\)
Multiply through by (r + r2) to get
-6r2 - 3r(r + r2) + 6 = -3(r + r2)
-6r2 - 3r2 - 3r3 + 6 = -3r - 3r2
Equating to zero, we have
3r3 - 3r2 + 3r2 + 6r2 - 3r - 6 = 0
This reduces to;
3r3 + 6r2 - 3r - 6 = 0
3(r3 + 2r2 - r - 2) = 0
By the factor theorem,
(r + 2): f(-2) = (-2)3 + 2(-2)2 - (-2) - 2
-8 + 8 + 2 - 2 = 0
giving r = -2 as the only valid value of r for the G.P.
From (3), = \(\frac{-6}{-2 + (-2)^2} = \frac{-6}{-2 + 4}\)
a = -6/2 = -3
Hence (a + r) = (-3 + -2) = -5
Users' Answers & Commentswe get S2 = 3 = \(a\frac{r^2 - 1}{r - 1}\)
giving 3(r - 1) = a(r2 - 1)
3r - 3 = ar2 - a
ar2 - 3r - a = -3 ..... (1)
ar + ar2 = -6 ..... (2)
From (2), a = \(\frac{-6}{(r + r^2)}\)
Substitute \(\frac{-6}{(r + r^2)}\) for a in (1)
\((\frac{-6}{(r + r^2)})r^2 - 3r - \frac{-6}{(r + r^2)} = -3\)
Multiply through by (r + r2) to get
-6r2 - 3r(r + r2) + 6 = -3(r + r2)
-6r2 - 3r2 - 3r3 + 6 = -3r - 3r2
Equating to zero, we have
3r3 - 3r2 + 3r2 + 6r2 - 3r - 6 = 0
This reduces to;
3r3 + 6r2 - 3r - 6 = 0
3(r3 + 2r2 - r - 2) = 0
By the factor theorem,
(r + 2): f(-2) = (-2)3 + 2(-2)2 - (-2) - 2
-8 + 8 + 2 - 2 = 0
giving r = -2 as the only valid value of r for the G.P.
From (3), = \(\frac{-6}{-2 + (-2)^2} = \frac{-6}{-2 + 4}\)
a = -6/2 = -3
Hence (a + r) = (-3 + -2) = -5
17
The nth term of the progression \(\frac{4}{2}\), \(\frac{7}{3}\), \(\frac{10}{4}\), \(\frac{13}{5}\) is ...
A
\(\frac{1 - 3n}{n + 1}\)
B
\(\frac{3n + 1}{n + 1}\)
C
\(\frac{3n + 1}{n - 1}\)
D
\(\frac{3n - 1}{n + 1}\)
correct option: b
Using Tn = \(\frac{3n + 1}{n + 1}\),
T1 = \(\frac{3(1) + 1}{(1) + 1} = \frac{4}{2}\)
T2 = \(\frac{3(2) + 1}{(2) + 1} = \frac{7}{3}\)
T3 = \(\frac{3(3) + 1}{(3) + 1} = \frac{10}{4}\)
Users' Answers & CommentsT1 = \(\frac{3(1) + 1}{(1) + 1} = \frac{4}{2}\)
T2 = \(\frac{3(2) + 1}{(2) + 1} = \frac{7}{3}\)
T3 = \(\frac{3(3) + 1}{(3) + 1} = \frac{10}{4}\)
18
If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)
A
24
B
16
C
14
D
26
correct option: a
x * y = x + 2y (given)
3 * 4 = 3 + 2(4) = 11
Hence, 2 * (3 * 4) = 2 * 11
= 2 + 2(11)
= 2 + 22
= 24
Users' Answers & Comments3 * 4 = 3 + 2(4) = 11
Hence, 2 * (3 * 4) = 2 * 11
= 2 + 2(11)
= 2 + 22
= 24
19
If P = \(\begin{vmatrix} 5 & 3 \ 2 & 1 \end{vmatrix}\) and Q = \(\begin{vmatrix} 4 & 2 \ 3 & 5 \end{vmatrix}\), find 2P + Q
A
\(\begin{vmatrix} 7 & 7 \ 14 & 8 \end{vmatrix}\)
B
\(\begin{vmatrix} 14 & 8 \ 7 & 7 \end{vmatrix}\)
C
\(\begin{vmatrix} 7 & 7 \ 8 & 14 \end{vmatrix}\)
D
\(\begin{vmatrix} 8 & 14 \ 7 & 7 \end{vmatrix}\)
correct option: b
2P + Q = 2\(\begin{pmatrix} 5 & 3 \ 2 & 1 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 10 & 6 \ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 14 & 8 \ 7 & 7 \end{pmatrix}\)
Users' Answers & Comments= \(\begin{pmatrix} 10 & 6 \ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 14 & 8 \ 7 & 7 \end{pmatrix}\)
20
Find the inverse \(\begin{vmatrix} 5 & 3 \ 6 & 4 \end{vmatrix}\)
A
\(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & -\frac{5}{2} \end{vmatrix}\)
B
\(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
C
\(\begin{vmatrix} 2 & \frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
D
\(\begin{vmatrix} 2 & \frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
correct option: b
Let A = \(\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix}\)
Then |A| = \(\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2
Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix}\)
= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)
= \(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)
Users' Answers & CommentsThen |A| = \(\begin{pmatrix} 5 & 3 \ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2
Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix}\)
= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \ -6 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)
= \(\begin{vmatrix} 2 & -\frac{3}{2} \ -3 & \frac{5}{2} \end{vmatrix}\)